KOT.ITMO.RU

Помогли? Яндекс.Деньги 41001143976737

Настоящие методические указания к лабораторному практикуму предназначены для практического закрепления материала по дисциплинам "Информатика" и "Вычислительная техника". Лабораторные работы и домашние задания охватывают часть курсов, посвященную знакомству с принципами функционирования ЭВМ. Они разбиты на три раздела. В первый раздел включены четыре лабораторных работы и два домашних задания, предназначенные для ознакомления с учебой ЭВМ (базовой ЭВМ), на которой выполняются все лабораторные работы, и реализации с ее помощью простейших алгоритмов. Во втором разделе рассматривается организация ввода-вывода информации в базовой ЭВМ, а в третьем - реализация ее микропрограммного устройства управления. В приложениях приведена инструкция по работе с базовой ЭВМ и справочные таблицы.

РАЗДЕЛ 1. БАЗОВАЯ ЭВМ

1.1 Назначение базовой ЭВМ

Базовая ЭВМ - это простая гипотетическая машина, обладающая типичными чертами многих конкретных ЭВМ. Знание принципов построения и функционирования этой ЭВМ будет хорошей базой для освоения ЭВМ любых типов и моделей. Естественно, что начинать изучение ЭВМ лучше всего с простых моделей, которые и были выбраны за прототип базовой ЭВМ.

1.2 Структура базовой ЭВМ

На рис. 1.1 приведена упрощенная структура базовой ЭВМ. Это одноадресная ЭВМ, работающая с 16-разрядными словами. В ней реализованы два вида адресации: прямая и косвенная.

Рассмотрим составные части базовой ЭВМ, не касаясь пока устройств ввода-вывода (УВВ) и пульта управления (ПУ).

[image: image1.png]|
8008 YCTPOACTBO
- 15 OCTAHOB

Рис. 1.1. Модель базовой ЭВМ

Память. Состоит из 2048 ячеек (16-битовых) с адресами 0,1,...,2046,2047.Восемь ячеек памяти с адресами 008,...,00F несколько отличаются от остальных. Эти ячейки называются индексными и их лучше использовать в циклических программах (п. 1.5).

Процессор. Состоит из ряда регистров, арифметическо-логического устройства и устройства управления.

Счетчик команд (СК) служит для организации обращений к ячейкам памяти, в которых хранятся команды программы. После исполнения любой команды СК указывает адрес ячейки памяти, содержащей следующую команду программы. Так как команды могут размещаться в любой из 2048 = 211 ячеек памяти, то СК имеет 11 разрядов.

Регистр адреса (РА) 11-разрядный регистр, содержащий значение исполнительного адреса (адреса ячейки памяти, к которой обращается ЭВМ за командой или данными).

Регистр команд (РК). Этот 16-разрядный регистр используется для хранения кода команды, непосредственно выполняемой машиной.

Регистр данных (РД). Используется для временного хранения 16-рязрядных слов при обмене информацией между памятью и процессором.

Аккумулятор (А). 16-разрядный регистр, являющийся одним из главных элементов процессора. Машина может одновременно выполнять арифметические и логические операции только с одним или двумя операндами. Один из операндов находится в аккумуляторе, а второй (если их два) - в регистре данных. Результат помещается в А.

Регистр переноса (С) - это одноразрядный регистр, выступающий в качестве продолжения аккумулятора и заполняющийся при переполнении А. Этот регистр используется при выполнении сдвигов.

Арифметическо-логическое устройство (АЛУ) может выполнять такие арифметические операции, как сложение и сложение с учетом переноса, полученного в результате выполнения предыдущей операции. Кроме того, оно способно выполнять операции логического умножения, инвертирования, циклического сдвига.

1.3. Система команд базовой ЭВМ

Классификация команд. ЭВМ способна понимать и выполнять точно определенный набор команд. При составлении программы пользователь ограничен этими командами. В зависимости от того, к каким блокам базовой ЭВМ обращается команда или на какие блоки она ссылается, команды можно разделить на три группы:

· обращения к памяти (адресные команды);

· обращения к регистрам (регистровые или безадресные команды);

· команды ввода-вывода.

Команды обращения к памяти предписывают машине производить действия с содержимым ячейки памяти, адрес которой указан в адресной части команды.

Безадресные команды выполняют различные действия без ссылок на ячейку памяти. Например, команда CLA (табл. 1.1) предписывает ЭВМ очистить аккумулятор (записать в А код нуля). Это команда обработки операнда, расположенного в конкретном месте, "известном" машине. Другой пример безадресной команды - команда HLT.

Команды ввода-вывода осуществляют обмен данными между процессором и внешними устройствами ЭВМ.

Полный перечень команд базовой ЭВМ приведен в таблице 1.1.

Форматы команд и способы адресации. Разработчики базовой ЭВМ выбрали три формата 16-битовых (однословных) команд с 4-битовым кодом операции (рис. 1.2).

Рис 1.2. Форматы команд: а - адресных, б - безадресных, в - команд ввода-вывода

В командах обращения к памяти на адрес отведено 11 бит. Следовательно, можно прямо адресоваться к 211 = 2048 ячейкам памяти, т.е. ко всей памяти базовой ЭВМ (прямая адресация). В этом случае бит вида адресации должен содержать 0. Если же в этом же бите установлена 1, то адрес, размещенный в адресной части команды, указывает на ячейку, в которой находится адрес операнда (косвенная адресация).

Отметим, что при мнемонической записи команд указание косвенной адресации производится путем заключения адреса в скобки. Например, команда ADD (25) -сложить содержимое А с содержимым ячейки, адрес которой хранится в ячейке 25 (косвенная адресация).

1.4 Арифметические операции

В этом разделе рассматриваются основные способы записи чисел в базовой ЭВМ, арифметические операции, выполняемые с этими числами, и команды, инициирующие арифметические операции.

Целые двоичные числа без знака можно использовать для представления нуля и целых положительных чисел. При размещении таких чисел в одном 16-разрядном слове они могут изменяться от (0000 0000 0000 0000)2 = (0000)16 = 0 до (1111 1111 1111 1111)2 = (1FFF)16 = 215 - 1 = 65535.

Подобные числа (так же как и рассмотренные ниже двоичные числа со знаком) относятся к числам с фиксированной запятой, разделяющей целую и дробную части числа. В числах, используемых в базовой ЭВМ, положение запятой строго фиксировано после младшего бита слова.

Целые двоичные числа со знаком используются тогда, когда необходимо различать положительные и отрицательные числа. В них старший бит используется для кодирования знака: 0 - для положительных чисел и 1 - для отрицательных чисел. Отрицательные числа представлены в дополнительном коде (табл. 1.2). Это упрощает конструкцию ЭВМ, так как при сложении двух таких чисел, имеющих разные знаки, не требуется переходить к операциям вычитания меньшего (по модулю) числа из большего и присвоения результату знака большего числа.

Таблица 1.1

Система команд базовой ЭВМ

	Наименование
	Мнемоника
	Код
	Описание

	Адресные команды

	Логическое умножение

Пересылка

Сложение

Сложение с переносом

Вычитание
	AND M

MOV M

ADD M

ADC M

SUB M
	1XXX

3XXX

4XXX

5XXX

6XXX
	(M) & (A) (A

(A) (M

(M) + (A) (A

(M) + (A) + (C) (A

(A) – (M) (A

	Переход, если перенос

Переход, если плюс

Переход, если минус

Переход, если ноль

Безусловный переход

Приращение и пропуск
	BCS M

BPL M

BMI M

BEQ M

BR M

ISZ M
	8XXX

9XXX

AXXX

BXXX

CXXX
0XXX
	Если (C) = 1, то M (CK
Если (A) >= 0, то M (CK
Если (A) < 0, то M (CK
Если (A)и(C) = 0, то M (CK
M (CK
(M) + 1 (M, если (M) >= 0,

то (CK) + 1 (CK

	Обращение к подпрограмме
	JSR M
	2XXX
	(CK) (M, M + 1 (CK

	Безадресные команды

	Очистка аккумулятора

Очистка рег. переноса

Инверсия аккумулятора

Инверсия рег. переноса

Циклический сдвиг

 влево на 1 разряд

Циклический сдвиг

 вправо на 1 разряд

Инкремент аккумулятора

Декремент аккумулятора
	CLA
CLC
CMA

CMC

ROL

ROR

INC

DEC
	F200

F300

F400

F500

F600

F700

F800

F900
	0 (A

0 (C

(!A) (A

(!C) (C

Содержимое A и C сдвигается влево, А(15) (C, C (A(0)

Содержимое A и C сдвигается вправо, A(0) (C, C (A(15)

(A) + 1 (A

(A) – 1 (A

	Останов

Нет операции

Разрешение прерывания

Запрещение прерывания
	HLT
NOP
EI

DI
	F000

F100

FA00

FB00
	

	Команды ввода-вывода

	Очистка флага

Опрос флага

Ввод

Вывод
	CLF B
TSF B

IN

OUT
	E0XX

E1XX

E2XX

E3XX
	0 (флаг устр. B
Если (флаг устр. B) = 1,

то (CK) + 1 (CK
(B) (A

(A) (B

	Примечания:

(M), (A), (CK), (C), (B) – содержимое ячейки с адресом M, аккумулятора, счетчика команд, регистра переноса и регистра данных устройства ввода-вывода с адресом B.

XXX – адрес ячейки памяти.

XX – адрес устройства ввода-вывода.

Рассмотрим простое правило для получения дополнительного кода двоичного числа (для примера взято двоичное число, эквивалентное числу 709):

1. Получить инверсию заданного числа (все его 0 заменить на 1, а все 1 - на 0):

0 000 0010 1100 0101
Число

1 111 1101 0011 1010
Инверсия числа

2. Образовать дополнительный код заданного числа путем добавления 1 к инверсии этого числа:

 1 111 1101 0011 1010
Инверсия числа

+

 1
Слагаемое 1

 ————————————————————

 1 111 1101 0011 1011
Дополнительный код числа

Проверим правильность вычисления дополнения путем сложения заданного числа и его дополнения:

 1 1 111 1111 1111 1111
Переносы

+

 0 000 0010 1100 0101
Число

 1 111 1101 0011 1011
Дополнительный код числа

 ——————————————————————

 1 0 000 0000 0000 0000
0

Так как перенос из старшего разряда выпадает за пределы разрядной сетки, то он не учитывается. Оставшаяся же 16-разрядная сумма равна нулю, что подтверждает правильность преобразования.

Таблица 1.2.

Десятичные эквиваленты 16-битовых двоичных чисел в дополнительном коде.

	Двоичное число в

 прямом коде
	Десятичное число
	Двоичное число в

дополнительном коде
	Десятичное число

	0 000 0000 0000 0000

0 000 0000 0000 0001

0 000 0000 0000 0010

0 000 0000 0000 0011

...

0 111 1111 1111 1110

0 111 1111 1111 1111

——
	0

+1

+2

+3

...

+32766

+32767

——
	——

1 111 1111 1111 1111

1 111 1111 1111 1110

1 111 1111 1111 1101

...

1 000 0000 0000 0010

1 000 0000 0000 0001

1 000 0000 0000 0000
	——

-1

-2

-3

...

-32766

-32767

-32768

Сложение целых двоичных чисел со знаком и без знака выполняется в базовой ЭВМ с помощью команды ADD.

Увеличение на 1 (INCREMENT) и уменьшение на 1 (DECREMENT). По команде INC к содержимому аккумулятора прибавляется единица, а по команде DEC - единица вычитается. Если при этом возникает перенос из старшего разряда А, то в регистр переноса заносится 1, в противном случае в него заносится 0.

Вычитание (X-Y) может выполняться путем сложения уменьшаемого X и дополнительного кода вычитаемого Y. Однако это требует записи и выполнения нескольких команд (CLA, ADD Y, CMA, INC, ADD X). Для сокращения программ и времени выполнения вычитания в базовой ЭВМ предусмотрена команда SUB Y (CLA, ADD X, SUB Y), которая реализует те же действия за меньшее время.

Умножение и деление. В базовой ЭВМ нет команд для выполнения этих действий (АЛУ не выполняет таких операций).Поэтому произведение и частное приходится получать программным путем.

1.5 Управление вычислительным процессом, сдвиги и логические операции

Задача управления вычислительным процессом, т.е. требуемой последовательностью выполнения команд, решается в базовой ЭВМ при помощи команд переходов (BCS, BPL, BMI, BEQ, BR), команд "Приращение и пропуск" (ISZ) и "Останов" (HLT). Все эти команды (кроме HLT) являются адресными, т.е. в них указывается адрес той ячейки памяти, из которой должна быть выбрана следующая команда программы при выполнении того или иного условия. Если же условия не выполняются, то должна исполняться команда, расположенная вслед за данной командой управления. Как и в других адресных командах, здесь можно использовать косвенную адресацию. Команды переходов не изменяют состояния аккумулятора и регистра переноса. Они могут лишь изменить содержимое счетчика команд, поместив в него адрес, определяемый адресной частью команды.

BCS M (Переход, если перенос). Переход к команде, расположенной в ячейке с адресом M, если содержимое регистра переноса равно 1.

BPL M (Переход, если плюс). Переход к команде, расположенной в ячейке с адресом M, если содержимое аккумулятора больше или равно нулю, т.е. в его старшем разряде (знаковом разряде) содержится 0.

BMI M (Переход, если минус). Переход к команде, расположенной в ячейке с адресом M, если содержимое аккумулятора меньше нуля, т.е. в его старшем (знаковом) разряде содержится 1.

BEQ M (Переход, если нуль). Переход к команде, расположенной в ячейке с адресом M, если содержимое аккумулятора равно нулю.

BR M (Переход безусловный). Переход к команде, расположенной в ячейке с адресом M, осуществляемый при любых значениях А и С или других регистров базовой ЭВМ.

Команды переходов широко применяются для организации циклических программ, которые используются в тех случаях, когда требуется несколько раз выполнить набор одинаковых действий с различными наборами данных. Базовая ЭВМ обладает рядом средств

для упрощения циклических программ. Целесообразность введения этих средств удобнее рассмотреть на примерах.

Пример 1.1 Получить произведение Z = Y * 50 .

Так как в системе команд базовой ЭВМ нет команды умножения, то воспользуемся простейшим способом: будем 50 раз складывать значение Y, используя программу, приведенную в табл. 1.3.

Так как в этой программе аккумулятор используется не только для накопления произведения, но еще для изменения количества выполненных циклов и сравнения их со значением множителя, то промежуточные результаты Z и С пришлось сохранить в памяти ЭВМ. Очевидно, что обсуждаемую программу можно существенно упростить, при наличии такого средства учета числа выполненных циклов и проверки условия завершения циклической программы, которое не затрагивает содержимого аккумулятора. Таким средством является команда ISZ (Приращение и пропуск). При каждом выполнении команды ISZ M, расположенной по адресу А, к содержимому ячейки с адресом М добавляется 1 и если результат меньше нуля, то выполняется команда, следующая за ISZ M (команда, расположенная по адресу А+1), в противном случае эта команда *попускается, т.е. выполняется команда, расположенная по адресу А+2. Программа с использованием команды ISZ приведена в табл. 1.4.

Таблица 1.3

Первый вариант программы для получения Z = Y * 50

	Ад-рес
	Содержимое
	Комментарии

	
	Код
	Мнемо-ника
	

	5

6

7

8

. . .

10

11

12

13

14

15

16

17

18

19

1A
	0078

0000

0032

0000

. . .

F200

4006

4005

3006

F200

4008

F800

3008

6007

A010

F000
	Y

Z

M

C

. . .

CLA

ADD 6

ADD 5

MOV 6

CLA

ADD 8

INC

MOV 8

SUB 7

BMI 10

HLT
	Множимое (здесь – десятичное значение 120)

Ячейка, отведенная для накопления результата. В ней поочередно будут храниться значения Y, 2*Y, … После 50 суммирований в этой ячейке будет содержаться искомый результат – 50 * Y
Множитель 50 = (32)16

Ячейка, используемая для накопления числа выполненных циклов, - счетчик циклов
 К промежуточному результату, находящемуся в ячейке 6,

 добавляется еще одно значение множимого Y
 Содержимое счетчика циклов увеличивается на 1,

 а его копия пока сохраняется в аккумуляторе

 Если содержимое счетчика циклов меньше значения

 множителя, то выполняется переход к командам,

 осуществляющим новое суммирование Y с промежу-

 точным значением Z

Останов. В ячейке 6 хранится искомый результат

Таблица 1.4

Второй вариант программы для получения Z = Y * 50

	Ад-рес
	Содержимое
	Комментарии

	
	Код
	Мнемо-ника
	

	5

6

7

. . .

10

11

12

13

14

15
	0078

0000

FFCE

. . .

F200

4005

0007

C011

3006

F000
	Y

Z

M

CLA

ADD 5

ISZ 7

BR 11

MOV 6

HLT
	Множимое

Ячейка, отведенная для накопления результата.

Отрицательное значение множителя (-50)

Очистка аккумулятора

К содержимому аккумулятора добавляется значение Y
Содержимое M наращивается на 1 и, если оно еще

меньше нуля, то выполняется команда BR 11. При

M = 0 команда BR 11 пропускается

Результат 50 сложений Y заносится в ячейку 6

Останов ЭВМ

Пример 1.2. Получить в ячейке 005 сумму 32 элементов массива, элементы которого размещены в ячейках памяти с 010 по 02F.

В отличие от предыдущей задачи, где многократно суммировалось содержимое одной ячейки (Y), здесь надо суммировать содержимое разных ячеек. Если бы команды базовой ЭВМ позволяли лишь прямо адресовать ячейки памяти, то в программе решения поставленной задачи пришлось бы либо использовать 32 команды сложения (4010, 4011,...,402E, 402F), либо применять модификацию адресной части команды сложения. Последнее реализовано в программе табл. 1.5.

Таблица 1.5

Первый вариант программы суммирования элементов массива

	Ад-рес
	Содержимое
	Комментарии

	
	Код
	Мнемо-ника
	

	5

6

. . .

10

.

.

.

2F

30

31

32

33

34

35

36

37

38

39

3A
	0000

FFE0

F200

4005

4010

3005

F200

4032

F800

3032

0006

C030

F000
	CLA

ADD 5

?

MOV 5

CLA

ADD 32

INC

MOV 32

ISZ 6

BR 30

HLT
	Ячейка, отведенная для накопления результата

Отрицательное число элементов массива

Численные значения элементов массива

Промежуточный результат (ячейка 5) суммируется

с содержимым элемента массива, адрес которого

расположен в адресной части команды, находящейся

в ячейке 32 (сначала этот адрес равен 10, а затем он

увеличивается при каждом прохождении цикла на 1

командами с 34 по 37)

Пересылка в аккумулятор команды, расположенной

в ячейке 32, добавление к ее содержимому 1 и запись

модифицированной команды на старое место

(в ячейку 32)

Наращивание на 1 содержимого счетчика элементов

массива и переход к команде 30 пока оно < 0

Останов ЭВМ

Модификация команд практически не используется в современных ЭВМ. Для сближения языка команд с алгоритмическими языками и для обеспечения возможности работы с программами, записанными в постоянные запоминающие устройства (откуда можно лишь читать команды), разработаны специальные средства адресации, одним из которых является косвенная адресация.

При использовании косвенной адресации нужно выбрать в памяти ЭВМ какую-либо ячейку (например, 007), записать в нее адрес первого элемента суммируемого массива (адрес 010), заменить в программе табл. 1.5 команду 4010 на команду 4807 (ячейка 32) и заменить команды модификации командами вычисления текущего адреса суммируемого элемента массива. Если же вычисление текущего адреса суммируемого элемента выполнять с помощью команды ISZ 7 (не затрагивая содержимого аккумулятора), то можно получить достаточно компактную программу, приведенную в табл. 1.6.

Таблица 1.6

Второй вариант программы суммирования элементов массива

	Ад-рес
	Содержимое
	Комментарии

	
	Код
	Мнемо-ника
	

	5

6

7

. . .

10

.

.

.

2F

30

31

32

33

34

35

36

37
	0000

FFE0

0010

F200

4807

0007

F100

0006

C031

3005

F000
	CLA

ADD (7)

ISZ 7

NOP

ISZ 6

BR 31

MOV 5

HLT
	Ячейка, отведенная для накопления результата

Отрицательное число элементов массива

Текущий адрес элемента массива

Численные значения элементов массива

Очистка аккумулятора

Суммирование очередного элемента массива

Текущий адрес элемента массива наращивается на 1

Команда “Нет операции”

Наращивание на 1 содержимого счетчика элементов

массива и переход к команде 31, пока оно < 0

Запись результата в ячейку 5

Останов ЭВМ

Таблица 1.7

Третий вариант программы суммирования элементов массива

	Ад-рес
	Содержимое
	Комментарии

	
	Код
	Мнемо-ника
	

	5

6

. . .

F

10

.

.

.

2F

30

31

32

33

34

35
	0000

FFE0

0010

F200

480F

0006

C031

3005

F000
	CLA

ADD (F)

ISZ 6

BR 31

MOV 5

HLT
	Ячейка, отведенная для накопления результата

Отрицательное число элементов массива

Текущий адрес элемента массива

Численные значения элементов массива

Очистка аккумулятора

Суммирование очередного элемента массива. Так как сначала в индексную ячейку F помещен адрес первого элемента массива (10), то после первого выполнения данной команды содержимое ячейки F увеличится на 1 и будет указывать на второй элемент массива, после второго выполнения команды – на третий элемент массива и т.д.

Наращивание на 1 содержимого счетчика элементов

массива и переход к команде 31, пока оно < 0

Запись результата в ячейку 5

Останов ЭВМ

Так как по команде ISZ 7 (табл. 1.6) производится наращивание положительной величины (адреса), то после ее выполнения счетчик команд будет указывать на команду 34 (команда по адресу 33 будет пропущена). Поэтому в ячейку 33 помещена команда "Нет операции", но можно было бы поместить даже число.

Наконец, рассмотрим еще одно средство: позволяющее упростить циклические программы базовой ЭВМ, - индексные ячейки (ячейки с адресами от 008 до 00F). Если произвести косвенное адресование какой-либо из этих ячеек, то сначала ее содержимое будет использовано в качестве адреса операнда, а затем оно автоматически увеличится на единицу. При прямом адресовании индексные ячейки (их содержимое может измениться лишь в случае записи информации в ячейку). Указанное свойство индексных ячеек позволяет составить оптимальную программу для суммирования элементов массива (табл. 1.7).

Побитовая обработка данных обеспечивается базовой ЭВМ командами логического умножения, циклических сдвигов, а также командами инвертирования и очистки регистра переноса.

Команда AND M (Логическое умножение) выполняет над каждым разрядом содержимого аккумулятора и содержимым ячейки М булеву операцию "&" ("И").

Результат выполнения команды для каждой пары битов операндов равен единице только тогда, когда оба бита равны единице, а в остальных случаях бит результата равен нулю, т.е. команда позволяет выделять или очищать определенные биты слова.

Команды ROL (циклический сдвиг влево на один разряд) и ROR (циклический сдвиг вправо на один разряд) замыкают аккумулятор и регистр переноса в кольцо и сдвигают все биты кольца на один разряд влево или вправо (рис.1.3). Сдвигами числа влево или вправо

	
	Регистр
	

	
	переноса
	Аккумулятор

	 До сдвига
	0
	1011100000101011

	а) После сдвига
	1
	0111000001010110

	
	
	

	 До сдвига
	0
	1011100000101011

	б) После сдвига
	1
	0101110000010101

Рис. 1.3. Циклические сдвиги: а - влево, б - вправо

можно реализовать операции умножения или деления на два (один сдвиг), на четыре (два сдвига), на восемь (три сдвига) и т.д.

1.6 Подпрограммы

Достаточно часто встречаются ситуации, когда отдельные части программы должны выполнить одни и те же действия по обработке данных (например, вычисление тригонометрической функции). В подобных случаях повторяющиеся части программы выделяют в подпрограмму, а в соответствующие места программы заносят лишь команды обращения к этой подпрограмме. В базовой ЭВМ для этой цели используется команда JSR (Обращение к подпрограмме). Ниже показана часть основной программы, содержащая две команды JSR 300, с помощью которых осуществляется переход к выполнению команд подпрограммы.

По команде JSR 300, расположенной в ячейке 25, выполняется запись числа 25 + 1 = 26 (текущего значения счетчика команд) в ячейку с адресом 300 и запись числа 300 + 1 = 301 в счетчик команд (адрес первой команды подпрограммы). Таким образом осуществляется переход к выполнению команд подпрограммы. Далее начинается процесс выполнения команд подпрограммы, который завершается командой BR (300), расположенной в ячейке 326. Эта команда безусловного перехода с косвенной адресацией предписывает ЭВМ выполнить переход к команде, расположенной по адресу, сохраняемому в ячейке 300. Так как в эту ячейку ранее было записано число 26, то будет исполняться команда, находящаяся в ячейке 26, т.е. следующая за обращением к подпрограмме. Аналогично выполняется команда JSR 300, расположенная в ячейке 72 (после выполнения команд подпрограммы будет выполнен переход к ячейке 73).

Таким образом, при оформлении подпрограммы перед ее первой командой следует разместить ячейку, в которую будет пересылаться адрес возврата из подпрограммы. В команде обращения к подпрограмме указывается адрес именно этой ячейки (например, адрес М в команде JSR M). Последней командой подпрограммы должна быть команда выхода (команда BR (M) для подпрограммы, размещенной начиная с ячейки М). По ней осуществляется переход к команде, адрес которой сохраняется в первой ячейке подпрограммы.

1.7 Выполнение машинных команд

В процессе исполнения команд устройство управления ЭВМ производит анализ и пересылку команд, отдельных ее частей (кода операции, признака адресации и адреса) или операнда из одного регистра ЭВМ в другой ее регистр, АЛУ, память или устройство ввода-вывода. Эти действия (микрооперации) протекают в определенной временной последовательности и скоординированы между собой. Для обеспечения такой последовательности в ЭВМ используется генератор тактовых импульсов.

Цикл команды. Для реализации одной команды требуется выполнить определенное количество микрокоманд, каждая из которых инициируется одним тактовым импульсом. Общее число тактовых импульсов, требуемых для выполнения команды, определяет время ее выполнения, называемое циклом команды. Цикл команды обычно включает один или несколько машинных циклов. Устройство управления базовой ЭВМ может находиться в четырех возможных состояниях: выборки команды, выборки адреса, исполнения и прерывания. Длительность каждого из этих четырех состояний определяет время выполнения соответствующего машинного цикла. Основные действия, выполняемые ЭВМ во время каждого из машинных циклов, описаны ниже и проиллюстрированы на рис. 1.4.

Выборка команд. В данном машинном цикле выполняется чтение команды из памяти и ее частичное декодирование.

1. Содержание ячейки памяти, на которую указывает счетчик команд, читается из памяти в регистр данных (рис. 1.4., а, б).

2. Содержимое счетчика команд увеличивается на 1 (рис. 1.4, б, в).

3. Содержимое регистра данных пересылается в регистр команд, код операции команды частично декодируется для выявления типа команды (адресная, безадресная или ввода-вывода), анализируя бит признака адресации и происходит подготовка цепей, необходимых для выполнения команды (рис. 1.4, г).

Безадресные команды и команды ввода-вывода окончательно исполняются в этом же цикле, т.е. это одноцикловые команды.

4. Выполняются действия по завершению одноцикловой команды. Выборка адреса. Этот машинный цикл следует за циклом выборки команды для адресных команд с косвенной адресацией (бит вида адресации равен 1). Цикл используется для чтения из памяти адреса операнда, результата или перехода и состоит из следующих шагов.

1) Адресная часть команды пересылается из регистра данных, где пока еще сохраняется копия команды, в регистр адреса.

2) Содержимое ячейки памяти, указываемой регистром адреса, читается в регистр данных. Теперь в этом регистре находится либо адрес операнда, либо адрес результата, либо адрес перехода, который будет использоваться в цикле исполнения команды. Если косвенно адресуется одна из индексных ячеек (адреса 8...F), то цикл выборки адреса операнда (результата) продолжается.

3) Содержимое регистра данных увеличивается на единицу.

4) Измененное содержимое регистра данных пересылается в ячейку памяти по адресу, указанному регистром адреса.

5) Содержимое регистра данных уменьшается на единицу.

После этой операции в регистре данных восстанавливается значение адреса, находившегося в индексной ячейке до выполнения шага 3. Содержимое же индексной ячейки увеличилось на 1 и при следующем обращении к ней будет выбран новый адрес операнда (результата).

Исполнение. Последовательность действий, выполняемых в этом цикле, определяется типом выполняемой адресной команды.

1. Для команд, при выполнении которых требуется выборка операнда из памяти ЭВМ (AND, ADD, ADC, SUB, ISZ), цикл исполнения используется для чтения операнда в регистр данных и выполнения операции, указываемой кодом операции команды. Пример цикла исполнения команды ADD 21 приведен на рис. 1.4, д, е, ж, з.

2. По команде пересылки (MOV) в этом машинном цикле производится запись содержимого аккумулятора в ячейку памяти с адресом, расположенным в регистре данных. Для этого содержимое регистра данных пересылается в регистр адреса, а содержимое аккумулятора - в регистр данных и далее в ячейку памяти, указываемую регистром адреса.

3. При исполнении команд переходов (BCS, BPL, BMI, BEQ) производится проверка соответствующего условия (1 - в регистре переноса, 0 - в знаковом разряде аккумулятора и т.п.) и пересылка адреса из регистра данных в счетчик команд при выполнении этого условия. Иначе будет выбрана команда, расположенная вслед за командой перехода. При исполнении команды безусловного перехода (BR) пересылка адреса перехода в счетчик команд выполняется без какой-либо проверки.

4. Для команды обращения к подпрограмме (JSR) во время этого машинного цикла осуществляется пересылка содержимого счетчика команд в ячейку памяти, адрес которой содержится в регистре данных, и занесение в счетчик команд увеличенного на единицу содержимого регистра данных.

Домашнее задание № 1

Выполнение арифметических операций с двоичными числами.

Цель задания - овладеть простейшими навыками перевода чисел в различные системы счисления и выявить ошибки, возникающие из-за их ограниченной разрядности.

1. По заданному варианту исходных данных получить набор десятичных чисел: Х1=А, Х2=С, Х3=А+С, Х4=А+С+С, Х5=С-А, Х6=65536-Х4, Х7= -Х1, Х8= -Х2, Х9= -Х3, Х10= -Х4, Х11= - Х5, Х12= -Х6. Выполнить перевод десятичных чисел Х1,...,Х12 в двоичную систему счисления, получив их двоичные эквиваленты В1,...,В12 соответственно. Для представления двоичных чисел В1,...,В12 использовать 16-разрядный двоичный формат со знаком. Для контроля правильности перевода выполнить обратный перевод двоичных чисел в десятичные и подробно проиллюстрировать последовательность прямого и обратного перевода для чисел Х1, В1, Х7 и В7.

2. Выполнить следующие сложения двоичных чисел: В1+В2, В2+В3, В7+В8, В8+В9, В2+В7, В1+В8. Для представления слагаемых и результатов сложения использовать 16-разрядный двоичный формат со знаком. Результаты сложения перевести в десятичную систему счисления, сравнить с соответствующими десятичными числами. Дать подробные комментарии полученным результатам.

	Операнд
	Номер варианта

	
	1
	2
	3
	4
	5
	6
	7

	А

С
	2006

15452
	6390

14940
	4186

15772
	1818

16924
	5238

15900
	2262

16028
	6582

17436

	Операнд
	Номер варианта

	
	8
	9
	10
	11
	12
	13
	14

	А

С
	4154

16162
	2902

18006
	1722

16988
	2774

15388
	5302

14972
	2294

16064
	1978

15516

	Операнд
	Номер варианта

	
	15
	16
	17
	18
	19
	20
	21

	А

С
	2998

16288
	6518

15260
	2678

16160
	5238

14932
	4314

15420
	2422

17500
	1754

17820

Домашнее задание № 2

Программирование циклических алгоритмов

Написать комплекс программ, состоящий из программы и подпрограммы и обеспечивающий подсчет количества требуемых элементов массива данных. Программа должна выявлять требуемые элементы, а их подсчет должен производиться в подпрограмме.

Варианты задания: подсчитать количество

1. положительных элементов из CEBA, 0848, 3476, AE05, B0BA;

2. отрицательных элементов из 71BC, ABBA, 63CE, 5826, C748;

3. нулевых элементов из 0000, 0707, 0000, C0AE, 0000;

4. ненулевых элементов из 0000, CBAE, 0707, 000, BACE;

5. положительных элементов из 0000, 0707, BACE, 0000, AE01;

6. отрицательных элементов из 0000, CCCE, 90BA, 0000, EEBB.

Лабораторная работа № 1

Исследование работы ЭВМ при выполнении линейных программ.

Цель работы - изучение приемов работы на базовой ЭВМ и исследование порядка выполнения арифметических команд и команд пересылки.

Порядок выполнения работ. Познакомиться с инструкцией по работе с моделью базовой ЭВМ (см. приложение №1), занести в память базовой ЭВМ заданный вариант программы и, выполняя ее по командам, заполнить таблицу трассировки выполненной программы.

Таблица 1.8

Форма таблицы трассировки.

	Выполняемая команда
	Содержимое регистров процессора после выполнения команды.
	Ячейка, содержим. которой изменилось после вып. Программы

	Адрес
	Код
	СК
	РА
	РК
	РД
	А
	С
	Адрес
	Новый код

	ххх
	хххх
	хххх
	хххх
	хххх
	хххх
	хххх
	х
	ххх
	хххх

Содержание отчета по работе.

1. Текст исходной программы по следующей форме:

	"Адрес"
	"Код команды"
	"Мнемоника"
	"Комментарии"

	21
	4015
	ADD 15
	(A)+(15)(A

2. Таблица трассировки

3. Описание программы:

- назначение программы и реализуемые ею функции (формулы);

- область представления данных и результатов;

- расположение в памяти ЭВМ программы, исходных данных и результатов;

- адреса первой и последней выполняемой команд программы;

4. Вариант программы с меньшим числом команд.

Варианты программ (первая команда программы помечена знаком "+").

	Адрес
	Варианты программ

	
	1
	2
	3
	4
	5
	6

	017

018

019

01A

01B

01C

01D

01E

01F

020

021

022

023

024
	 0000

 F1AA

 7C99

 255A
 0000

+ F200

 4018

 101A

 301B

 F200

 4019

 101B

 301B

 F000
	 0000

+ F200

 4021

 6022

 3024

 F200

 4023

 1024

 3024

 F000

 10AA

 0295

 7C9E
 301A
	+ F200

 4022
 5021

 3020

 F200

 4023
 1020

 3020

 F000

 0000

 7C99

 01AA

 9255

 0000
	 0000

 4057
 2009

 00F4

+ F200

 4024

 6018

 301A

 F200

 401A
 1019
 301A

 F000

 C3CF
	 0000

 40A5
 4039

+ F200

 4018

 6024

 3023

 F200

 4019

 1023

 3023

 F000

 0001

 0255
	 0000

 0018
+ F200

 4023

 6024

 3018

 F200

 4022

 4018

 3018

 F000

 71AA

 0255

 0C99

Лабораторная работа № 2

Исследование работы ЭВМ при выполнении разветвляющихся программ.

Цель работы - изучение команд переходов, способов организации разветвляющихся программ и исследование порядка функционирования ЭВМ при выполнении таких программ.

Подготовка к выполнению работы.
1. Восстановить текст заданного варианта программы (см. п.1 лабораторной работы № 1).

2. Заполнить таблицу трассировки, выполняя за базовую ЭВМ заданный вариант программы (теоретическая таблица).

3. Составить описание программы (см. п.3 лабораторной работы №1).

Порядок выполнения работы. Занести в память базовой ЭВМ заданный вариант программы и заполнить таблицу трассировки, выполняя эту программу по командам (экспериментальная таблица).

Содержание отчета по работе. Текст программы с комментариями, две таблицы трассировки ("теоретическая" и "экспериментальная"); описание программы; вариант программы с меньшим числом команд.

Варианты программ (первая команда программы помечена знаком "+").

	Адрес
	Варианты программ

	
	1
	2
	3
	4
	5
	6

	016

017

018

019

01A

01B

01C

01D

01E

01F

020

021

022

023
	 3255

 0F07

+ F200

 4016

 4017

 9020

 F200

 3022

 F100

 F000

 3022

 C01F

 1111

 0000
	+ C01A

 1FD0

 001F

 0000

 F200

 4017

 4018

 A020

 F200

 F100

 3022

 F000

 CCCC

 0000
	 0F0A

 F0F6

 F000

+ F200

 4016

 4017

 B020

 F200

 3018

 F000

 4016

 3018

 C01F

 0000
	 0000

+ C01B

 0019

 F000

 1000

 F200

 4019

 401A

 8022

 F200

 3018

 301A

 F000

 0000
	 0000

 5417

+ F200

 4022

 4023

 9020

 F200

 3017

 F100

 F000

 3017

 C01F

 FFD1

 002F
	 0000

+ C01B

 001B

 FFD0

 002F

 F200

 4019

 401A

 A021

 F200

 F100

 3023

 F000

 CCCC

Лабораторная работа № 3

Исследование работы ЭВМ при выполнении циклических программ.

Цель работы - изучение способов организации циклических программ и исследование порядка функционирования ЭВМ при выполнении циклических программ.

Подготовка к выполнению работы.

1. Восстановить текст заданного варианта программы.

2. Составить описание программы.

Порядок выполнения работы. Занести в память базовой ЭВМ заданный вариант программы и заполнить таблицу трассировки, выполняя эту программу по командам.

Содержание отчета по работе. Текст программы с комментариями, таблица трассировки; описание программы.

Варианты программ (первая команда программы помечена знаком "+").

	Адрес
	Варианты программ

	
	1
	2
	3
	4
	5
	6

	00A

00B

00C

00D

00E

00F

010

011

012

013

014

015

016

017

018

019

01A

01B

01C

01D

01E

01F
	 0000

 0000

 0000

 0000

 001B

 0000

 0000

 0000

 FFFC
+ F200

 480E

 B018

 4011

 3011

 0012

 C013

 F000

 0377
 0000

 F0EB

 0000

 0000
	 0000

 0000

 0000

 0000

 0000

 001B

 0000

 0000

 FFFC
+ F200

 480F

 A018

 4011

 3011

 0012

 C013

 F000

 7F01

 DECA

 30AE

 0010

 0000
	 0000

 0000

 001A

 0000

 0000

 0000

 0000

+ F200

 480C

 9016

 401D

 301D

 0019

 C011

 F000

 FFFC
 8778

 1777

 8788

 1111
 0000

 0000
	 0010
 0000

 0000

 0000

 0000

 0000

 3355
 71BC

 ABBA

 63CD

 FFFC
 0000

+ F200

 480A

 A01D

 F200

 F800

 4015

 3015

 0014

 C016

 F000
	 0000

 001D

 0000

 0000

 0000

 0000

 0000

 FFFD

+ F200

 480B

 9019

 F200

 F800

 401C

 301C

 0011

 C012

 F000

 0000

 B0B0
 5B0B

 CF11
	 0000

 0000

 0000

 0011
 0000

 0000

 0000

 0000

 0000

 0707

 0000

 FFFC
+ F200

 480D

 B01A

 C01D

 F800

 4011

 3011

 0015

 C016

 F000

Лабораторная работа № 4

Исследование работы ЭВМ при выполнении комплекса программ.

Цель работы - изучение способов связи между программными модулями, команды обращения к подпрограмме и исследование порядка функционирования ЭВМ при выполнении комплекса взаимосвязанных программ.

Подготовка к выполнению работ.

1. Восстановить текст заданного варианта программы и подпрограммы (программного комплекса).

2. Составить описание программного комплекса.

Порядок выполнения работы. Занести в память базовой ЭВМ заданный вариант программы и заполнить таблицу трассировки, выполняя эту программу по командам.

Содержание отчета по работе. Текст программы с комментариями, таблица трассировки; описание программы.

Варианты программ (первая команда программы помечена знаком "+").

	Адрес
	Варианты программ

	
	1
	2
	3
	4
	5
	6

	00A

00B

00C

00D

00E

00F

010

011

012

013

014

015

016

017

018

019

01A

01B

01C

01D

. . .

045

046

047

048

049

04A
	 0010
 0000

 0000

 0000

 0000

 0000

 8080

 ABBA

 630D

 71B0
 FFFC
 0000

+ F200

 480A

 A01A

 2045

 0014

 C016

 F000

 0000

 . . .

 0000

 F200

 F800

 4015

 3015

 C845
	 0000

 001A

 0000

 0000

 0000

 0000

 0000

 FFFE
+ F200

 480B

 9016

 2045

 0011

 C012

 F000

 0000

 CF01

 B0BA

 5B1B

 0000

 . . .

 0000

 F200

 F800

 4019

 3019

 C845
	 0000

 0000

 0012

 0000

 0000

 0000

 0000

 FFFD

 0000

 0707

 0000

 0000

+ F200

 480C

 B01A

 C01B

 2045

 C011

 C016

 F000

 . . .

 0000

 F200

 F800

 4015

 3015

 C845
	 0000

 0000

 0000

 0019

 0000

 0000

+ F200

 480D

 B014

 2045

 0018

 C010

 F000

 0000

 FFFD

 8018
 0000

 81FF

 0000

 0000

 . . .

 0000

 F200

 F800

 4017

 3017

 C845
	 0000

 0000

 0000

 0000

 0010
 0000

 0000

 6789

 CACA

 8A7C

 FFFC
+ F200

 480E

 A019

 2045

 0014

 C015

 F000

 0000

 0000

 . . .

 0000

 F200

 F800

 4010

 3010

 C845
	 0000

 0000

 0000

 0000

 0000

 0011
 F200

 4816

 F800

+ F200

 480F

 9017

 2045

 001A

 C013

 F000

 FFFE
 0000

 0000

 0000

 . . .

 0000

 F200

 F800

 401B

 301B
 C845

Раздел 2. Организация ввода-вывода в базовой ЭВМ

2.1 Устройства ввода-вывода базовой ЭВМ

[image: image2.png]F1,F2,F3 - T'oroeHocts BY Shift+F2(F3) - Bsoa B peructps AanHwx BYZ(BY3)

PerucTpw npoueccopa 7 Bueunne ycTpoACTBA
Mprkas Ha BBOA-BMBOA
P A
0000 + + +
fleundpatop fleundpatop fleundpatop
ameea n ameea n ameea n
npvason npvason npvason
T T 7
flavec BY
3anpoc_npepuBaHus
= =]]
Cocroanne gnaroe BY
iia mmoga
;)
[~ PA BY1 = [~ PA BYZ = [~ PA BY3 =
00000000 00000000 00000000
0000000000000000 PABOTA + +
- 15 OCTAHOB lMHa BuBOAA

F4-BBOA AOP. F5-3AMHCH F6-YTEHHE F?7-NYCK FS8—MPOAOMK. F9-PABOTA/OCTAHOB F10-BbiXO(l

Модель базовой ЭВМ с устройствами ввода-вывода представлена на рис 2.1. В базовой ЭВМ используются простейшие внешние устройства (ВУ): одно устройство вывода (ВУ-1) и два устройства ввода (ВУ-2 и ВУ-3). В модели устройства ввода-вывода представлены 8-разрядными регистрами данных (РД ВУ). Через регистры данных ВУ-2 и ВУ-3 информация может быть введена в базовую ЭВМ, а в регистр данных ВУ-1 принята из базовой ЭВМ.

Рис. 2.1. Модель базовой ЭВМ с устройствами ввода-вывода

Между ВУ и процессором включены простейшие контроллеры, каждый из которых содержит: дешифратор адреса, позволяющий выделить обращение к данному ВУ среди всех обращений к устройствам ввода-вывода, подключенных к процессору; дешифратор приказов, декодирующий приказы от процессора на выполнение тех или иных операций; регистр состояния, в котором хранится информация о готовности ВУ к обмену данными с процессором. В контроллерах простейших ВУ обычно используются однобитовые регистры готовности, которые часто называют флагом или флажком. Это название используется и в контроллерах базовой ЭВМ. Контроллеры ВУ связаны с процессором шинами ввода и вывода информации, шиной адреса и шиной управления, по которым передаются приказы от процессора и сведения о состояния ВУ.

2.2 Программно-управляемая передача данных.

При использовании программно-управляемого обмена должна быть составлена программа, обеспечивающая пересылку данных из памяти ЭВМ в аккумулятор и далее в регистр памяти контроллера ВУ (вывод данных) или из регистра данных контроллера ВУ в аккумулятор и затем в память ЭВМ (ввод данных). В такое программе можно реализовать один из трех типов обмена: синхронный, асинхронный и по прерыванию. Синхронный обмен очень редко используется в ЭВМ и не будет рассматриваться в данном пособии, остальные виды обмена рассматриваются в п.п. 2.4 и 2.5.

Формат команд ввода-вывода приведен на рис. 1.2.в. Код операции (1110)2 служит для отличия этих команд от других команд ЭВМ. Между собой они отличаются кодом приказа: пересылка данных (IN В - ввод и OUT В - вывод), проверка готовности ВУ (TSF B) и сброс состояния готовности (CLF B), где В - адрес ВУ. Адрес позволяет связать процессор с одним из подключенных к нему ВУ (их может быть до 28=256).

Флажок - однобитовый регистр готовности ВУ, устанавливаемый в единичное состояние, когда ВУ готово к обмену информацией. Если флажок сброшен (установлен в ноль), ВУ занято: устройство вывода еще обрабатывает предыдущую команду, а устройство ввода готовит данные для передачи в процессор.

Команда CLF B (E0xx, где хх - две последние 16-ричные цифры адреса ВУ) служит для установки в нуль флажка ВУ с адресом В.

Команда TSF B (E1xx) служит для проверки готовности к обмену ВУ с адресом В. Если флажок этого ВУ сброшен (ВУ не готово к обмену), то выполняется команда, расположенная вслед за TSF В. В противном случае эта команда пропускается и выполняется команда, расположенная через одну за TSF В.

Команда IN B (E2хх) служит для пересылки содержимого регистра данных контроллера ВУ с адресом B в восемь младших разрядов аккумулятора.

Команда OUT B (E3хх) служит для пересылки содержимого восьми младших разрядов аккумулятора в регистр данных контроллера ВУ с адресов В.

Для организации обмена с ВУ в состав устройства управления базовой ЭВМ включены два устройства: регистр состояний внешних устройств (Ф) и контроллер прерываний. Связь контроллеров ВУ с этими устройствами осуществляется по линиям "Состояние флага" и "Запрос прерывания". Данные передаются по шинам ввода и вывода.

2.3 Асинхронный обмен.

Программа такого обмена строится так: сначала проверяется готовность ВУ к обмену и если оно готово, то дается команда на обмен. ВУ сообщает о готовности установкой флага.

Пример 2.1 С помощью ВУ-2 записать в ячейку 006 коды символов слова "ДА".

Программа для выполнения этого задания имеет вид:

	
	Содержимое
	

	Адрес
	Код
	Мнемоника
	Комментарии

	05
	FFF8
	
	Константа -8, используемая для сдвига

	06
	0000
	
	Ячейка для записи слова "ДА"

	
	

	20
	E102
	TSF 2
	Опрос флага контроллера ВУ-2 и повторение этой операции: если ВУ-1 не готовок обмену (флаг=0)

	21
	C020
	BR 20
	

	22
	E202
	IN 2
	Это действие выполняется лишь после готовности ВУ-2, т.е. когда при выполнении TSF 2 выяснятся, что флаг=1 и пропускается BR 20, По команде IN 2 содержимое регистра данных контроллера ВУ-2 пересылается в восемь младших разрядов аккумуляторов.

	23
	E002
	CLF 2
	Сброс готовности ВУ-2 (очистка флага ВУ-2)

	24
	F600
	ROL
	Код первого введенного символа сдвигается на восемь разрядов влево и освобождается место для ввода следующего символа.

	25
	0005
	ISZ 5
	

	26
	C024
	BR 24
	

	27
	E102
	TSF 2
	Опрос флага контроллера ВУ-2 (см. Комментарии к командам 20 и 21)

	28
	C027
	BR 27
	

	29
	E202
	IN 2
	Ввод кода символа (если подан сигнал готовности ВУ-2)

	2А
	E002
	CLF 2
	Сброс готовности ВУ-2

	2В
	3006
	MOV 6
	Пересылка кода слова "ДА" в ячейку 006

	2С
	F000
	HLT
	Останов ЭВМ

Две первые команды этой программы "заставляют" ЭВМ ожидать его готовности ВУ-2 к выдаче данных. Поэтому необходимо ввести код символа "Д" в регистр данных ВУ-2. После сброса готовности ВУ-2 (команда CLF 2), которая подтверждает, что данные из регистра данных контроллера ВУ-2 переписаны в аккумулятор можно приступить к набору кода символа "А". В процессе набора этого кода ЭВМ занята сдвигом кода символа "Д" в старшие разряды аккумулятора, чтобы подготовиться к приему символа "А", и ожиданием поступления нового сигнала готовности ВУ-2 к выдаче информации. Так как ЭВМ выполняет эти операции значительно быстрее, чем человек, набирающий код нового символа. Теперь в аккумулятор перепишется все слово "ДА", затем оно перепишется в ячейку 006 и выполнение программы прекратиться.

Легко заметить, что при асинхронном обмене ЭВМ должна тратить время на ожидание момента готовности, а так как готовность проверяется командным путем (команда TSF), то в это время ЭВМ не может выполнять никакой другой работы по преобразованию данных.

2.4 Обмен по прерыванию программы.

Этот вид обмена отличается от асинхронного тем, что сигнал готовности ВУ к обмену анализируется не программным, а аппаратным путем. ЭВМ может выполнять любую не связанную с обменом программу (будем называть ее основной), а когда из ВУ по линии "Запрос прерывания" (рис. 1.1) поступит сигнал готовности ВУ к приему или выдаче информации, прервать (приостановить) выполнение этой программы на время выполнения программы обмена данными. Все эти действия осуществляются с помощью контроллера прерываний, входящего в состав устройства управления базовой ЭВМ.

Команды EI (Разрешение прерывания) и DI (Запрещение прерывания) переводят контроллер прерываний в одно из двух состояний, в которых он соответственно реагирует или не реагирует на сигналы готовности ВУ, передаваемые по линии "Запрос прерывания". Если контроллер прерываний установлен в состояние разрешения прерывания, то выполняются следующие действия.

Шаг 1. По завершению выполнения текущей команды основной программы управление передается контроллеру прерываний. Если в этот момент на линии "Запрос прерывания" нет сигнала о готовности какого-либо ВУ, то начинается выборка и исполнение следующей команды основной программы и данный шаг повторяется. При наличии запроса прерывания выполняется второй шаг.
Шаг 2. Контроллер прерываний переходит в состояние запрещения прерывания, в ячейку памяти с адресом 000 заносится содержимое СК (адрес следующей команды основной программы, которая выполнялась бы при отсутствии запроса прерывания), и управление передается команде расположенной в ячейке 001. Так происходит переход к подпрограмме обработки прерывания (с первой командой в ячейке 001), функции которой определяются содержанием следующих шагов.

Шаг 3. Производится запоминание в памяти содержимого аккумулятора и регистра переноса. Для этого требуется минимум три команды: пересылка содержимого аккумулятора в специально отведенную буферную ячейку (например, В1), циклический сдвиг содержимого аккумулятора влево (для того, чтобы содержимое регистра переноса попало в аккумулятор) и запись этого содержимого в другую буферную ячейку (например, В2). Таким образом, необходимый минимум информации о прерванной программе сохраняется - в ячейке 000 хранится адрес продолжения прерванной программы, а в ячейках В1 и В2 хранится содержимое двух других основных регистров А и С.

Шаг 4. Производится поиск источника прерывания. Для этого в любой, наиболее целесообразной, последовательности опрашиваются флаги всех ВУ (команда TSF). При обнаружении ВУ с установленным флагом (флаг=1) выполняется переход к тому участку подпрограммы, в котором описаны действия по обмену данными с этим ВУ.

Шаг 5. Выполняется передача данных и их предварительная обработка, если это необходимо.

Шаг 6. Восстанавливается содержимое регистра переноса и аккумулятора. Для этого требуется минимум пять команд: очистка аккумулятора, вызов содержимого ячейки В2 в очищенный аккумулятор, циклический сдвиг вправо для восстановления содержимого регистра переноса , очистка аккумулятора и вызов содержимого буферной ячейки В1 в очищенный аккумулятор.

Шаг 7. Контроллер прерываний вновь переводится в состояние разрешение прерывания (команда ЕI) и осуществляется возврат к выполнению прерванной программы, т.е. к команде, адрес которой хранится в ячейке 000 (команда BR (0)). Здесь следует отметить, что команда BR () должна располагаться непосредственно за командой ЕI. Иначе при появлении во время обработки прерывания будет стерт (заменен на новый) адрес возврата и путь возврата к прерванной программе будет разрушен.

Пример 2.2 Составить программу, которая периодически (с периодом в три цикла команды) наращивает на 1 содержимое аккумулятора. Восемь младших разрядов аккумулятора должны выводиться на ВУ-1 по его запросу, а по запросу ВУ-3 код, записанный в регистр данных контроллера ВУ-3, должен помещаться в ячейку 25.

Основная программа решения задачи примера 2.2

	
	Содержимое
	

	Адрес
	Код
	Мнемоника
	Комментарии

	20
	FA00
	EI
	Установка состояния разрешения прерывания

	21
	F200
	CLA
	Очистка аккумулятора

	22
	F800
	INC
	Цикл для наращивания содержимого аккумулятора

	23
	F100
	NOP
	

	24
	C022
	BR 22
	

	25
	0000
	
	Ячейка для хранения кодов, поступающих с ВУ-1

Подпрограмма обработки прерываний для примера 2.2

	
	Содержимое
	

	Адрес
	Код
	Мнемоника
	Комментарии

	00
	
	
	Ячейка для хранения адреса возврата (этот адрес будет занесен сюда на 2-м шаге)

	01
	C030
	BR 30
	Первая команда подпрограммы - переход к основному ее тексту, размещенному в ячейках 30-4С

	
	

	30
	304B
	MOV 4B
	Сохранение в буферных ячейках 4В и 4С содержимого аккумулятора и регистра переноса (ШАГ 3)

	31
	F600
	ROL
	

	32
	304C
	MOV 4C
	

	33
	E103
	TSF 3
	Опрос флага ВУ-3. Если он сброшен, то переход к опросу флага ВУ-1. В противном случае переход на ввод данных из ВУ-3

	34
	C036
	BR 36
	

	35
	C039
	BR 39
	

	36
	E101
	TSF 1
	Опрос флага ВУ-1. Если он сброшен, то переход к сбросу флага ВУ-2. В противном случае переход на вывод данных в ВУ-1.

	37
	C043
	BR 43
	

	38
	C03E
	BR 3E
	

	39
	F200
	CLA
	Ввод данных из ВУ-3, пересылка их в ячейку 25, сброс флага ВУ-3, переход к восстановлению содержимого основных регистров и выходу из подпрограммы

	3A
	E203
	IN 3
	

	3B
	E003
	CLF 3
	

	3C
	3025
	MOV 25
	

	3D
	C044
	BR 44
	

	3E
	F200
	CLA
	Пересылка в аккумулятор содержимого буферной ячейки 4В, вывод на ВУ-1 восьми младших разрядов аккумулятора, сброс флага ВУ-1, переход восстановлению А и С и выходу из подпрограммы.

	3F
	404B
	ADD 4B
	

	40
	E301
	OUT 1
	

	41
	E001
	CLF 1
	

	42
	C044
	BR 44
	

	43
	E002
	CLF 2
	Очистка флага ВУ-2 (ШАГ 5)

	44
	F200
	CLA
	Восстановление содержимого регистра переноса и аккумулятора (ШАГ 6)

	45
	404C
	ADD 4C
	

	46
	F700
	ROR
	

	47
	F200
	CLA
	

	48
	404B
	ADD 4B
	

	49
	FA00
	EI
	Возобновление состояния разрешения прерывания и выход из подпрограммы (ШАГ 7)

	4A
	C800
	BR (0)
	

	4B
	0000
	
	Ячейки для сохранения содержимого аккумулятора и регистра переноса

	4C
	0000
	
	

Если команды этой программы занести в память базовой ЭВМ, установить в СК пусковой адрес 20 и нажать кнопку ПУСК, то начнет выполняться бесконечный цикл наращивания содержимого аккумулятора. Когда же на пульте управления (рис 1.1) будет нажата любая из трех кнопок ("Готов" ВУ1, ВУ2 или ВУ3), то будет выполнен переход к подпрограмме обработки прерываний. Она может быть построена по стандартной схеме (как в таблице) или в другой форме, учитывающий конкретные особенности реализуемой задачи.

Домашнее задание № 3

Программирование обмена данными с внешними устройствами

Написать комплекс программ, обеспечивающий обмен данными с ВУ в режиме прерывания программы. Основная программа должна наращивать на 1 (начиная с 0) содержимое (обозначим его буквой Х) какой-либо ячейки памяти. Цикл для наращивания Х не должен содержать более трех команд. Вывод всегда осуществляется на ВУ-3 в асинхронном режиме. Выводится только восемь младших разрядов результата.

Варианты задания:

1. По запросу ВУ-1 вывести -2Х, а по запросу ВУ-2 вывести 3Х/2.

2. По запросу ВУ-3 вывести Х-5, а по запросу ВУ-2 вывести Х/2+10.

3. По запросу ВУ-2 вывести Х/2, а по запросу ВУ-1 вывести -5Х/2.

4. По запросу ВУ-3 вывести -Х, а по запросу ВУ-1 вывести Х/2.

5. По запросу ВУ-2 вывести 3Х+3, а по запросу ВУ-1 вывести -5Х.

6. По запросу ВУ-1 вывести Х/2+1/2, а по запросу ВУ-3 вывести Х-1.

Составить методику проверки правильности выполнения разработанного комплекса на базовой ЭВМ, т.е. написать последовательность действий оператора (пользователя) базовой ЭВМ, которые необходимо выполнить, чтобы проверить все возможные режимы работы комплекса программ (при появлении запроса прерывания от любого ВУ) и получить заданное количество результатов.

Пример. Начальный фрагмент методики проверки

1. Загрузить комплекс программ в память базовой ЭВМ.

2. Запустить основную программу в автоматическом режиме с адреса XXX.

3. Установить "Готовность ВУ-3".

4. После сброса "Готовность ВУ-3", что означает ... (указать конкретно что именно), сделать следующее (указать что именно) и т.д. .

Лабораторная работа № 5

Исследование работы ЭВМ при асинхронном обмене данными с ВУ

Цель работы - изучение организации системы ввода-вывода базовой ЭВМ, команд ввода-вывода и исследование процесса функционирования ЭВМ при обмене данными по сигналам готовности внешних устройств.

Подготовка к выполнению работы.

Закодировать заданную программу и составить ее описание. Команды программы надо разместить, начиная с ячейки 10, а коды символов - начиная с ячейки 20.

Порядок выполнения работы

1. Занести программу в память базовой ЭВМ.

2. Перевести ЭВМ в режим автоматического выполнения программы и ввести в память четыре первых символов заданного слова.

3. Перевести ЭВМ в режим покомандного выполнения программы и ввести в ее память еще два символа заданного слова, заполняя таблицу трассировки.

Содержание отчета по работе. Текст программы, заданное слово и коды его символов, таблица с результатами трассировки и описание программы.

Исходные данные к лабораторной работе

1. Программа асинхронного обмена данными

	Адрес
	Мнемоника
	Комментарии

	A:
	TSF 1
	Опрос флага ВУ-1 и повторение этой операции, если ВУ-1 не готово к обмену (флаг=0)

	
	BR A
	

	
	IN 1
	Ввод данных в аккумулятора, если флаг=1

	
	CLF 1
	Сброс флага ВУ-1

	
	MOV (B)
	Пересылка содержимого аккумулятора в память и увеличение на 1 адреса элемента массива (В=В+1)

	
	ISZ C
	Наращивание на 1 содержимого счетчика элементов массива и переход по адресу А, пока оно < 0.

	
	BR A
	

	
	HLT
	Останов ЭВМ

Примечание. Здесь А, В, С - адреса начала программы, ячейки с начальным адресом массива (любая индексная ячейка) и ячейки содержащей счетчик количества еще не введенных символов.

2. Варианты вводимых слов:

 1) БАОБАБ; 2) МИШЕНЬ; 3) АДРЕС; 4) КОМАНДА; 5) МИКРОН; 6) ТРЕСТ.

3. Коды используемых символов

	Символ
	А
	Б
	Д
	Е
	И
	Й
	К
	М
	Н
	О
	П
	Р
	Т
	Ч
	Ш
	Ь
	С
	Я

	Код
	E1
	E2
	E4
	E5
	E9
	EA
	EC
	ED
	EE
	EF
	F0
	F2
	F4
	FE
	FB
	F8
	F3
	F1

Лабораторная работа № 6

Исследование работы ЭВМ при обмене данными с ВУ

в режиме прерывания программы.

Цель работы - изучение организации процесса прерывания программы и исследования порядка функционирования ЭВМ при обмене данными в режиме прерывания программы. Работа является практический проверкой домашнего задания №3.

Подготовка к выполнению работы. Выполнить домашнее задание №3.

Порядок выполнения работы. Используя методику проверки разработанной программы, получит три пары результатов, указывая для каждого выведенного значения величину Х. Результаты работы программного комплекса представить в виде таблицы.

Содержание отчета по работе. Домашнее задание №3, таблицу с результатами работы комплекса программ.

РАЗДЕЛ 3. МИКРОПРОГРАММНОЕ УСТРОЙСТВО УПРАВЛЕНИЯ

 3.1. Микропрограммное управление вентильными схемами.

 Процесс выборки, дешифрации и исполнения команд ЭВМ состоит из последовательности элементарных операций (например, пересылка содержимого одного регистра в другой регистр или проверка определенного бита в каком-либо регистре). Для выполнения таких микроопераций, как правило, достаточно подать открывающий сигнал на одну или несколько вентильных схем, связывающих между собой два регистра, регистр и АЛУ и (или) перестраивающих АЛУ на выполнение заданной операции (сложения, логического умножения и т.п.). Требуемая последовательность сигналов на вентильные схемы ЭВМ вырабатывается ее устройством управления, связанным с тактовым генератором.

Микропрограммное устройство управления (МПУ) базовой ЭВМ - это, в свою очередь, очень простая ЭВМ, для которой регистры и вентильные схемы процессора являются как бы устройствами ввода-вывода (рис. 3.1).

Программа работы такой ЭВМ называется микропрограммой, а ее команды, содержащие информацию об элементарных действиях, выполняемых в течение одного рабочего такта ЭВМ, - микрокомандами.

В одном из вариантов реализации МПУ используется всего два типа микрокоманд - операционная и управляющая:

Микропрограмма хранится в постоянном запоминающем устройстве - памяти микрокоманд. В каждом такте работы ЭВМ из этой памяти в регистр микрокоманд (РМК) пересылается очередная микрокоманда, т.е. микрокоманда, на которую указывает счетчик микрокоманд (СчМК), одновременно выполняющий функции регистра адреса микрокоманд. Затем содержимое СчМК наращивается на единицу.

Если из памяти микрокоманд выбрана операционная микрокоманда, то в 31-ый бит РМК записывается 0 (код операции ОМК). Этот сигнал через инвертор НЕ открывает вентильную схему ВРО и обеспечивает передачу на В0-В28 состояний соответствующих битов РМК (управляющих сигналов У0-У28).

Разряды РМК, содержащие 1, создают открывающий управляющий сигнал, а содержащие 0 - закрывающий. Подобная структура микрокоманды, где каждый бит используется для создания отдельного управляющего сигнала, называется горизонтальной.

Вентильные схемы В1, В2, В3 предназначены, соответственно, для передачи содержимого РД, РК, СК на правый вход АЛУ. Если все эти схемы закрыты (У1=У2=У3=0), то сигнал на правом входе АЛУ соответствует коду числа 0. Аналогично используются вентильные схемы В4, В5, В6, позволяющие передать на левый вход АЛУ содержимое А, РС, КР или кода числа 0.

Управляющие сигналы У7-У10 перестраивают АЛУ на выполнение различных микроопераций. При У7=...У10=0 в 17-разрядный буферный регистр АЛУ (БР) записывается сумма входных сигналов АЛУ: при У7=У8=У9=0 и У10=1 к такой сумме добавляется 1; при У7=У8=У10=0 и У9=1 в БР записывается результат логического умножения входных сигналов АЛУ; при У7=1 и (или) У8=1 можно получить аналогичные результаты, но для инверсных значений одного или двух входных сигналов.

[image: image3.png]Tab - Pabora c O / namatei MK

Shift+F3 — Bxa ~ Buxn pexuma TAKT

YCTPOACTBO YNPABAEHHA

MANATD = (= PA = (= CK =
000 000 000
001

002 (= PA = (= PK =
003 0000 0000
004

005 = A =

006 — P =

007 0000

008 —

009 - A —

007 0000

008

00C

00D Per. cocr.

0O : Eoooooooooooo

00F : XAKPUF IEONZC:
0000000000000000 PABOTA

~ 15 OCTAHOB

MK

—| M

1
—— P Kk ——— [80 : 40c0
0100000000001000 81 : 838F
82 : 0008

| 83 : 4075

1 84 : 838F

85 : 0004

flewngpatop HK 8 : 4075

87 : 838F

Yo 88 : 4008
pa— 89 : 8301
8A : 4800

« 8B : 8301
uz8 8C : 4400
i 8D : 8301

+1 = Cu MK — 8E : 4100
—— | oF : 8788

10091000

F4-BBOA AAP. F5-3ANMCH F6-UYTEHME F?7-NYCK

F8-MPOAONK. F9-PAEOTA/OCTAHOB F10-BbiXO(l

Рис. 3.1. Модель базовой ЭВМ с микропрограммным устройством управления

Рассмотрим несколько примеров операционных микрокоманд.

Для вычитания содержимого РД из содержимого А и записи результата в буферный регистр (А-РД=>БР) следует выполнить микрокоманду (0000 0000 0000 0000 0000 0101 0001 0010)2 = (0000 0512)16, т.е. одновременно подать единичные управляющие сигналы на В1, В4, В8 и В10. Тогда к уменьшаемому прибавится обратный код вычитаемого и к этой добавится единица, что эквивалентно суммированию уменьшаемого с дополнительным кодом вычитаемого.

Для вычитания 1 из содержимого аккумулятора (А-1=>БР) надо выполнить микрокоманду (0000 0110)16, т.е. подать единичные управляющие сигналы на В4 и В8 и сложить содержимое А с обратным кодом числа 0 или (что то же самое) с дополнительным кодом числа -1.

Для увеличения на 1 содержимого СК (СК+1=>БР) надо выполнить микрокоманду (0000 0408)16, т.е. открыть В3 и В10.

Вентильные схемы В11 и В12 позволяют записать в БР сдвинутое на один разряд вправо или влево содержимое аккумулятора. При этом "лишний" разряд БР заполняется содержимым регистра переноса С.

Вентильные схемы В13-В15 используются для передачи в однобитовые регистры С, N, Z признаков результата операции, выполненной в АЛУ: двух старших разрядов 17-битного БР (перенос и знак), а также выходного сигнала специальной схемы, который равен 1 лишь в том случае, когда содержимое БР равно 0. Управляющие сигналы У16 и У17 позволяют установить регистр С в 0 или 1 независимо от результата выполнения операции, сохраняемого в БР.

Вентильные схемы В18-В22 позволяют переписать содержимое 16 или 11 младших разрядов в РА, РД, РК, СК и А соответственно.

Вентильные схемы В23-В28 используются для организации обмена информацией между регистрами процессора и другими подсистемами ЭВМ (памятью и устройствами ввода-вывода). И, наконец, вентильная схема В0 используется для передачи сигнала прекращения выполнения программы (команда HLT).

Если из памяти микрокоманд выбрана управляющая микрокоманда, то в 31-ый бит РМК записывается 1 (код операции УМК). Этот сигнал открывает вентильную схему БР1 и тем самым создает условия для выполнения УМК. Теперь по сигналу, создаваемому каким-либо битом поля выбора проверяемого регистра (У1, У2, У4 или У5) открывается из вентильных схем В1, В2, В4 или В5 и на вентили ВВ0-ВВ15 поступает через АЛУ содержимое соответствующего регистра (РД, РК, А или РС). Одновременно на эти же вентили поступает с РМК содержимое поля выбора проверяемого бита. Так как в этом поле записана только одна 1 (на месте, соответствующем проверяемому биту), то открывается лишь один из вентилей ВВ0-ВВ15, через который на схему сравнения поступает содержимое проверяемого бита из проверяемого регистра. На другой вход этой схемы поступает содержимое однобитового поля сравнения (24-ый бит УМК), в которое при кодировании УМК записали 0 или 1.

Если проверяемый бит и бит из поля сравнения идентичны, то схема сравнения формирует единичный сигнал, который открывает вентильную схему ВА и на СчМК пересылается адрес перехода (16-24-ый биты УМК). В противном случае на СчМК сохраняется адрес микрокоманды, расположенной вслед за исполняемой, так как после выборки текущей микрокоманды содержимое СчМК увеличивается на единицу.

При организации разветвлений в микропрограмме используется содержимое регистра состояний, являющегося объединением однобитовых регистров признаков и состояний ЭВМ (табл. 3.1). Такое объединение сделано с целью формального уменьшения числа регистров, с которыми работает МПУ, что позволяет сократить разрядность УМК. На структурной схеме (рис. 3.1) РС изображен (для удобства описания) в виде самостоятельного регистра, хотя его разряды лишь дублируют состояние регистров С, N, Z и т.д.

 Таблица 3.1

	Разряд
	Содержимое

	0
	Перенос

	1
	Нуль

	2
	Знак

	3
	0 - используется для организации безусловных переходов в МПУ

	4
	Разрешение прерывания

	5
	Прерывание

	6
	Состояние ВУ (Ф)

	7
	Состояние тумблеров РАБОТА/ОСТАНОВ (1 - РАБОТА)

	8
	Программа

	9
	Выборка команды

	10
	Выборка адреса

	11
	Исполнение

	12
	Ввод-вывод

Рассмотрим две управляющих микрокоманды:

1. После увеличения на 1 содержимого РД в команде ISZ надо проверить знаковый разряд РД (разряд с номером 15). Если этот разряд равен 1 (содержимое РД меньше нуля), то выполнение команды ISZ завершается. В противном случае необходимо прибавить 1 к содержимому СК, т.е. организовать пропуск команды, следующей за ISZ. Это разветвление (переход по адресу 8F) осуществляется с помощью микрокоманды (858F 8000)16.

2. Для организации безусловного перехода (например, по тому же адресу 8F) используется 3-й бит регистра состояний, содержащий константу 0. Сравнение этого разряда с нулем, записанным в 24-ый разряд УМК, всегда дает положительный результат и позволяет переслать в СчМК нужный адрес перехода. Микрокоманда, реализующая эту операцию, имеет вид: (828F 0008)16.

3.2 Интерпретатор базовой ЭВМ.

Полный текст микропрограммы (интерпретатора команд) приведен в табл. 3.2. В этой таблице есть один "лишний" столбец (ВЕРТ.), содержание которого будет описано ниже.

Первые микрокоманды интерпретатора служат для выборки команды из основной памяти (ОП) базовой ЭВМ и определения ее типа: адресная, безадресная или ввода-вывода. Для этого содержимое СК (в котором хранится адрес исполняемой команды) пересылается через БР в РА (СК=>БР и БР=>РА). Затем из ячейки ОП, на которую указывает РА, пересылается в РД команда, а содержимое СК увеличивается на единицу и пересылается в БР: ОП(РА)=>РД, СК+1=>БР.

Таблица 3.2

Интерпретатор базовой ЭВМ (микропрограмма)

	Адрес
	Микрокоманды
	Комментарии

	
	Горизонт.
	Верт.
	Метка
	Действие

	 1
	2
	3
	4
	5

	Цикл выборки команды

	01
	0000 0008
	0300
	нач
	СК ==> БР

	02
	0004 0000
	4001
	
	БР ==> РА

	03
	0080 0408
	0311
	
	ОП(РА) ==> РД, СК + 1 ==> БР

	04
	0020 0000
	4004
	
	БР ==> СК

	05
	0000 0002
	0100
	
	РД ==> БР

	06
	0010 0000
	4003
	
	БР ==> РК

	
	
	
	
	Определение типа команды

	07
	880C 8000
	AF0C
	
	IF BIT(15,PK) = 0 THEN АДЦ(0C)

	08
	880C 4000
	AE0C
	
	IF BIT(14,PK) = 0 THEN АДЦ(0C)

	09
	880C 2000
	AD0C
	
	IF BIT(13,PK) = 0 THEN АДЦ(0C)

	0A
	895E 1000
	EC5E
	
	IF BIT(12,PK) = 1 THEN БАД(5C)

	0B
	828E 0008
	83BE
	
	GOTO B/B(8E)

	
	
	
	
	Определение вида адресации

	0С
	881D 0800
	AB1D
	АДЦ
	IF BIT(11,PK) = 0 THEN АДР(1D)

	Цикл выборки адреса операнда

	0D
	0000 0002
	0100
	
	РД ==> БР

	0E
	0004 0000
	4001
	
	БР ==> РА

	0F
	0080 0000
	0001
	
	ОП(РА) ==> РД

	10
	881D 0008
	A31D
	
	IF BIT(3,PK) = 0 THEN АДР(1D)

	11
	891D 0010
	E41D
	
	IF BIT(4,PK) = 1 THEN АДР(1D)

	12
	891D 0020
	E51D
	
	IF BIT(5,PK) = 1 THEN АДР(1D)

	13
	891D 0040
	E61D
	
	IF BIT(6,PK) = 1 THEN АДР(1D)

	14
	891D 0080
	E71D
	
	IF BIT(7,PK) = 1 THEN АДР(1D)

	15
	891D 0100
	E81D
	
	IF BIT(8,PK) = 1 THEN АДР(1D)

	16
	891D 0200
	E91D
	
	IF BIT(9,PK) = 1 THEN АДР(1D)

	17
	891D 0400
	EA1D
	
	IF BIT(10,PK) = 1 THEN АДР(1D)

	18
	0000 0402
	0110
	
	РД ==> БР

	19
	0008 0000
	4002
	
	БР ==> РД

	1A
	0100 0000
	0002
	
	РД ==> ОП(РА)

	1B
	0000 0082
	0140
	
	РД + СОМ(0) = РД - 1 ==> БР

	1C
	0008 0000
	4002
	
	БР ==> РД

	Цикл исполнения адресных команд

	
	
	
	
	Декодирование адресных команд

	1D
	892D 8000
	EF2D
	АДР
	IF BIT(15,PK) = 1 THEN ПРХ(2D)

	1E
	0000 0002
	0100
	
	РД ==> БР

	1F
	0004 0000
	4001
	
	БР ==> РА

	20
	8927 4000
	EE27
	
	IF BIT(14,PK) = 1 THEN АРФ(27)

	21
	8824 2000
	AD24
	
	IF BIT(13,PK) = 0 THEN A1(24)

	22
	8857 1000
	AC57
	
	IF BIT(12,PK) = 0 THEN JSR(57)

	23
	8238 0008
	8338
	
	GOTO MOV(38)

	24
	0080 0000
	0001
	A1
	ОП(РА) ==> РД

	25
	8850 1000
	AC50
	
	IF BIT(12,PK) = 0 THEN ISZ(50)

	1
	2
	3
	4
	5

	26
	8235 0008
	8335
	
	GOTO AND(35)

	27
	0080 0000
	0001
	АРФ
	ОП(РА) ==> РД

	28
	882B 2000
	AD2B
	
	IF BIT(13,PK) = 0 THEN СУМ(2B)

	29
	8843 1000
	AC43
	
	IF BIT(12,PK) = 0 THEN SUB(43)

	2A
	82B0 0008
	83B0
	
	GOTO P - A(B0)

	2B
	883C 1000
	AC3C
	СУМ
	IF BIT(12,PK) = 0 THEN ADD(3C)

	2C
	823F 0000
	833F
	
	GOTO ADC(3F)

	2D
	8830 4000
	AE30
	ПРХ
	IF BIT(14,PK) = 0 THEN УПХ(30)

	2E
	8847 1000
	AC47
	
	IF BIT(12,PK) = 0 THEN BR(47)

	2F
	82D0 0008
	83D0
	
	GOTO Р - П(D0)

	30
	8833 2000
	AD33
	УПХ
	IF BIT(13,PK) = 0 THEN П1(33)

	31
	884С 1000
	AC4C
	
	IF BIT(12,PK) = 0 THEN BMI(4C)

	32
	824E 0008
	834E
	
	GOTO BEQ(4E)

	33
	8846 1000
	AC46
	П1
	IF BIT(12,PK) = 0 THEN BCS(46)

	34
	824A 0008
	834A
	
	GOTO BPL(4A)

	
	
	
	
	Исполнение адресных команд

	35
	0000 0212
	1120
	AND
	A & РД ==> БР

	36
	0040 C000
	4035
	
	БР ==> A, N, Z

	37
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	38
	0000 0010
	1000
	MOV
	A ==> БР

	39
	0008 0000
	4002
	
	БР ==> РД

	3A
	0100 0000
	0002
	
	РД ==> ОП(РА)

	3B
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	3C
	0000 0012
	1100
	ADD
	A + РД ==> БР

	3D
	0040 E000
	4075
	
	БР ==> A, C, N, Z

	3E
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	3F
	823C 0001
	803C
	ADC
	IF BIT(0,PC) = 0 THEN ADD(3C)

	40
	0000 0412
	1110
	
	A + РД + 1 ==> БР

	41
	0040 E000
	4075
	
	БР ==> A, C, N, Z

	42
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	43
	0000 0512
	1190
	SUB
	A + COM(РД) + 1 = A - РД ==> БР

	44
	0040 E000
	4075
	
	БР ==> A, C, N, Z

	45
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	46
	828F 0001
	808F
	BCS
	IF BIT(0,PC) = 0 THEN ПРЕ(8D)

	47
	0000 0002
	0100
	BR
	РД ==> БР

	48
	0020 0000
	4004
	
	БР ==> СК

	49
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	4A
	838F 0004
	C28F
	BPL
	IF BIT(2,PC) = 1 THEN ПРЕ(8F)

	4B
	8247 0008
	8347
	
	GOTO BR(47)

	4C
	828F 0004
	828F
	BMI
	IF BIT(2,PC) = 0 THEN ПРЕ(8F)

	4D
	8247 0008
	8347
	
	GOTO BR(47)

	4E
	828F 0002
	818F
	BEQ
	IF BIT(1,PC) = 0 THEN ПРЕ(8F)

	4F
	8247 0008
	8347
	
	GOTO BR(47)

	50
	0000 0402
	0110
	ISZ
	РД + 1 ==> БР

	51
	0008 0000
	4002
	
	БР ==> РД

	52
	0100 0000
	0002
	
	РД ==> ОП(РА)

	53
	858А 8000
	DF8F
	
	IF BIT(15,РД) = 1 THEN ПРЕ(8F)

	54
	0000 0408
	0310
	
	СК + 1 ==> БР

	55
	0020 0000
	4004
	
	БР ==> СК

	56
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	57
	0000 0402
	0110
	JSR
	РД + 1 ==> БР

	58
	0010 0000
	4003
	
	БР ==> РК

	59
	0000 0008
	0300
	
	СК ==> БР

	5A
	0008 0000
	4002
	
	БР ==> РД

	5B
	0100 0004
	0202
	
	РД ==> ОП(РА), РК ==> БР

	5C
	0020 0000
	4004
	
	БР ==> СК

	5В
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	Продолжение цикла выборки команды

декодирование и исполнение безадресных команд

	5E
	8861 0800
	AB61
	БАД
	IF BIT(11,PK) = 0 THEN Б0(61)

	5F
	886C 0400
	AA6C
	
	IF BIT(10,PK) = 0 THEN Б1(6C)

	60
	82E0 0008
	83E0
	
	GOTO Р - Б(E0)

	61
	8867 0400
	AA67
	Б0
	IF BIT(10,PK) = 0 THEN Б2(67)

	1
	2
	3
	4
	5

	62
	8865 0200
	A965
	
	IF BIT(9,PK) = 0 THEN Б3(65)

	63
	8882 0100
	A882
	
	IF BIT(8,PK) = 0 THEN ROL(82)

	64
	8285 0008
	8385
	
	GOTO ROR(85)

	65
	887B 0100
	A87B
	Б3
	IF BIT(8,PK) = 0 THEN CMA(7B)

	66
	827E 0008
	837E
	
	GOTO CMC(7E)

	67
	886A 0200
	A96A
	Б2
	IF BIT(9,PK) = 0 THEN Б4(6A)

	68
	8876 0100
	A876
	
	IF BIT(8,PK) = 0 THEN CLA(76)

	69
	8279 0008
	8379
	
	GOTO CLC(79)

	6A
	8888 0100
	A888
	Б4
	IF BIT(8,PK) = 0 THEN HLT(88)

	6B
	8287 0008
	8387
	
	GOTO NOP(87)

	6C
	886F 0200
	A96F
	Б1
	IF BIT(9,PK) = 0 THEN Б5(6F)

	6D
	888A 0100
	A88A
	
	IF BIT(8,PK) = 0 THEN EI(8A)

	6E
	828C 0008
	838C
	
	GOTO DI(8C)

	6F
	8873 0100
	A873
	Б5
	IF BIT(8,PK) = 0 THEN INC(73)

	70
	0000 0110
	1080
	DEC
	A + COM(0) = A - 1 ==> БР

	71
	0040 E000
	4075
	
	БР ==> A, C, N, Z

	72
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	73
	0000 0410
	1010
	INC
	A + 1 ==> БР

	74
	0040 E000
	4075
	
	БР ==> A, C, N, Z

	75
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	76
	0000 0200
	0020
	CLA
	0 ==> БР

	77
	0040 C000
	4035
	
	БР ==> A, N, Z

	78
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	79
	0001 0000
	4080
	CLC
	0 ==> C

	7A
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	7B
	0000 0090
	1040
	CMA
	COM(A) ==> БР, инверсия A

	7C
	0040 C000
	4035
	
	БР ==> A, N, Z

	7D
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	7E
	8280 0001
	8080
	CMC
	IF BIT(0,PC) = 0 THEN Б6(80)

	7F
	8279 0008
	8379
	
	GOTO CLC(79)

	80
	0002 0000
	40C0
	Б6
	1 ==> C

	81
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	82
	0000 1000
	0008
	ROL
	RAL(A) ==> БР, сдвиг влево

	83
	0040 E000
	4075
	
	БР ==> A, C, N, Z

	84
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	85
	0000 0800
	0004
	ROR
	RAR(A) ==> БР, сдвиг вправо

	86
	0040 E000
	4075
	
	БР ==> A, C, N, Z

	87
	828F 0008
	838F
	NOP
	GOTO ПРЕ(8F)

	88
	0000 0001
	4008
	HLT
	Останов машины

	89
	8201 0008
	8301
	
	GOTO НАЧ(01)

	8A
	1000 0000
	4800
	EI
	Разрешение прерывания

	8B
	8201 0008
	8301
	
	GOTO НАЧ(01)

	8C
	0800 0000
	4400
	DI
	Запрещение прерывания

	8D
	8201 0008
	8301
	
	GOTO НАЧ(01)

	Продолжение цикла выборки команды

декодирование и исполнение команд ввода-вывода

	8E
	0200 0000
	4100
	B/B
	Организация связей с ВУ

	Цикл прерывания

	8F
	8288 0080
	8788
	ПРЕ
	IF BIT(7,PC) = 0 THEN HTL(88)

	90
	8201 0020
	8501
	
	IF BIT(5,PC) = 0 THEN НАЧ(01)

	91
	0000 0200
	0020
	
	0 ==> БР

	92
	0004 0000
	4001
	
	БР ==> РА

	93
	0000 0008
	0300
	
	СК ==> БР

	94
	0008 0000
	4002
	
	БР ==> РД

	95
	0100 0400
	0012
	
	РД ==> ОП(РА), 1 ==> БР

	96
	0020 0000
	4004
	
	БР ==> СК

	97
	0800 0000
	4400
	
	Запрещение прерывания

	98
	8201 0008
	8301
	
	GOTO НАЧ(01)

	Пультовые операции

	
	
	
	
	Ввод адреса

	99
	0000 0040
	3000
	В/А
	КР ==> БР

	9A
	0020 0000
	4004
	
	БР ==> СК

	9B
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	1
	2
	3
	4
	5

	
	
	
	
	Чтение

	9C
	0000 0008
	0300
	ЧТ
	СК ==> БР

	9D
	0004 0000
	4001
	
	БР ==> РА

	9E
	0080 0408
	0311
	
	ОП(РА) ==> РД, СК + 1 ==> БР

	9F
	0020 0000
	4004
	
	БР ==> СК

	A0
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	
	
	
	
	Запись

	A1
	0000 0008
	0300
	ЗАП
	СК ==> БР

	A2
	0004 0000
	4001
	
	БР ==> РА

	A3
	0000 0040
	3000
	
	КР ==> БР

	A4
	0008 0000
	4002
	
	БР ==> РД

	A5
	0100 0408
	0312
	
	РД ==> ОП(РА), СК + 1 ==> БР

	A6
	0020 0000
	4004
	
	БР ==> СК

	A7
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	
	
	
	
	Пуск

	A8
	0000 0200
	0020
	ПУС
	0 ==> БР

	A9
	005C E000
	4077
	
	БР ==> A, C, N, Z, РА, РД, РК

	AA
	0400 0000
	4200
	
	Сброс флагов ВУ

	AB
	0800 0000
	4400
	
	Запрещение прерывания

	AC
	828F 0008
	838F
	
	GOTO ПРЕ(8F)

	. . .
	
	
	
	

	B0
	
	
	Р - А
	Арифметическая команда 7###

	. . .
	
	
	
	

	D0
	
	
	Р - П
	Команда перехода D###

	. . .
	
	
	
	

	E0
	
	
	Р - Б
	Безадресная команда FC##

	. . .
	
	
	
	

	FF
	
	
	
	

Далее содержимое БР, т.е. адрес следующей команды, пересылается в СК, а команда пересылается из РД в РК, после чего начинается ее дешифрация.

Так как адресные команды (команды с кодами операции от 0 до D) обязательно содержат ноль в 15, 14 или 13 бите, то проверкой этих битов РК можно выделить адресную команду и перейти к проверке ее 2-го бита (бита вида адресации). Для разделения команд ввода-вывода (код операции Е) и безадресных команд (код операции F) достаточно проанализировать 12-ый бит РК: если этот бит равен 1, то надо переходить к микрокомандам продолжения дешифрации безадресных команд, расположенных, начиная с адреса 5E (метка БАД). В комментариях микрокоманда анализа 12-го бита РК записана в виде:

IF BIT(12,РК)=1 THEN БАД(5E).

В памяти микрокоманд нет полных микропрограмм для адресных команд с кодами операций 7 и D, а также для безадресных команд FC00, FD00, FE00 и FF00. Когда при декодировании команды выясняется, что выбрана команда 7xxx, управление передается ячейке с адресом В0. Начиная с этой ячейки, могут располагаться микрокоманды какой-либо новой арифметической команды (например, умножения). Для микропрограмм реализации команды перехода и безадресных команд выделены участки памяти микрокоманд с начальными адресами D0 и E0.

В базовой ЭВМ реализован и другой вариант интерпретатора, использующий более короткие - вертикальные микрокоманды (столбец "ВЕРТ." табл. 3.2). Эти микрокоманды состоят из полей, в которых закодированы требуемые наборы управляющих сигналов (рис. 3.2). Для декодирования используются дополнительные устройства - дешифраторы.

Домашнее задание №4

Расширение системы команд ЭВМ.

Цель задания - изучение микрокоманд базовой ЭВМ, микропрограмм выполнения отдельных команд, а так же овладение навыками составления микропрограмм для новых команд.

Часть I. Написать последовательность адресов микрокоманд, которые должны быть выполнены при реализации заданного фрагмента программы, начинающегося с команды, расположенной по адресу 002 (перед выполнением программы исполняется команда "Пуск", очищающая аккумулятор и регистр переноса).

	Адрес
	Номер варианта

	
	1
	2
	3
	4
	5
	6

	1

2

3

4

5
	 0

 CMA

 BMI 05

 NOP

+ MOV 01
	 1

 INC

 BLP 05

 NOP

+ ADD 01
	 1

 DEC

 BMI 05

 NOP

+ ADD 01
	 1

 ADD 01

+ BLP 05

 NOP

 DEC
	 1

+ BEQ 05

 NOP

 ADD 01

 INC
	 1

 CMC

 BCS 05

 NOP
+ ADC 01

Результаты сводятся в таблицу вида:

	Команда
	Машинный цикл
	Последовательность адресов микрокоманд

	AND 01

(1001)

	—

Выборка команды

Исполнение

—
	89

01, 02, 03, 04, 05, 06, 07, 0C

1D, 1E, 1F, 20,21, 24, 25, 35, 36, 37, 8F

88

	CLC
(1300)

	—

Выборка

команды

—
	89

01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 5E,

61, 67, 68, 69, 79, 7A, 8F

88

	. . .
	. . .
	. . .

В этой таблице символом "-" отмечены микрокоманды остановки и перехода к циклу "ВЫБОРКА КОМАНДЫ", используемые при пошаговом выполнении программы.

Кроме того необходимо описать поля шести последних микрокоманд цикла "ИСПОЛНЕНИЕ" команды, отмеченной знаком "+". Описания каждой микрокоманды выполнить в виде рисунков:

Часть II.

А. Написать завершающие вертикальные микрокоманды цикла "ИСПОЛНЕНИЕ" следующих команд:

Команда 7ххх

1 вариант - ЗАГРУЗКА(записать в аккумулятор содержимое ячейки памяти, на которую указывает адресная часть команды);

2 вариант - ПЕРЕСЫЛКА СО СБРОСОМ(записать содержимое аккумулятора в ячейку памяти, на которую указывает адресная часть команды, а затем очистить аккумулятор);

3 вариант - СРАВНЕНИЕ(вычесть содержимое аккумулятора содержимое ячейки памяти, на которую указывает адресная часть команды, и, не изменяя содержимое аккумулятора, установить признаки результата вычитания: C, N, Z);

4 вариант - ЗАГРУЗКА ДОПОЛНИТЕЛЬНАЯ(записать в аккумулятор дополнительный код содержимого ячейки, на которую указывает адресная часть команды);

5 вариант - ПЕРЕСЫЛКА ДОПОЛНИТЕЛЬНАЯ(записать дополнительный код содержимого аккумулятора в ячейку памяти, на которую указывает адресная часть команды);

6 вариант - ПЕРЕСЫЛКА УДВОЕННАЯ (записать в ячейку памяти, на которую указывает адресная часть команды, удвоенное содержимое аккумулятора).

Команда Dxxx

Организовать переход к команде, расположенной по адресу, на которую указывает адресная часть команды, если:

1 вариант - аккумулятор содержит четное число;

2 вариант - аккумулятор содержит нечетное число;

3 вариант - аккумулятор содержит число, большее чем 16383;

4 вариант - аккумулятор содержит число, меньшее чем -16384;

5 вариант - 7-й бит аккумулятора(старший бит младшего байта) равен нулю;

6 вариант - 7-й бит аккумулятора равен единице;

Безадресные команды

1 вариант - циклический сдвиг влево на 2 разряда (FC00);

2 вариант - циклический сдвиг вправо на 2 разряда (FD00);

3 вариант - получение дополнительного кода аккумулятора(FE00);

4 вариант - запись единицы в аккумулятор(FC00);

5 вариант - циклический сдвиг влево с очисткой регистра С(FD00);

6 вариант - циклический сдвиг вправо с очисткой регистра С(FЕ00);

Б. Написать тестовые программы для проверки правильности исполнения всех трех синтезированных команд базовой ЭВМ и подготовиться к выполнению лабораторной работы №8. Тестовые программы должны отвечать следующим требованиям:

1) Для синтезированных арифметических и без адресных команд результат их выполнения должен быть зафиксирован в памяти базовой ЭВМ, а не только в регистрах,

2) Если проверяемая арифметическая или безадресная команда устанавливает признаки результата (C,Z,N), необходимо проверить правильную установку одного из них, используя соответствующую команду перехода. Результат проверки признака зафиксировать в памяти базовой ЭВМ,

3) Для синтезированных команд переходов необходимо проверить команду как при выполнении условия перехода, так и при его невыполнении. Результат проверки в обоих случаях зафиксировать в памяти базовой ЭВМ.

Таким образом, после выполнения правильно разработанной тестовой программы в автоматическом режиме в памяти базовой ЭВМ будет размещена информация, позволяющая однозначно подтвердить правильность выполнения синтезированной команды.

В. При разработке микропрограмм заданных команд следует иметь в виду:

1. В процессе дешифрации команды 7ххх в РА записывается адрес операнда (может использоваться для команд пересылки), а в РД - сам операнд (может использоваться для команд загрузки и сравнения). Затем осуществляется переход к ячейке памяти микрокоманд ВО, где надо разместить первую синтезируемую микрокоманду команды 7ххх.

2. После выборки команды перехода ххх в РД сохраняется адрес перехода (адресная часть команды), который может быть переписан в СК при выполнении условия перехода. Последняя микрокоманда дешифрации команды Dххх передает управление в ячейку с адресом D0, где надо разместить первую синтезируемую микрокоманду команды Dххх.

3. Когда в процессе дешифрации безадресных команд выясняется, что в 10-м и 11-м разрядах РК содержатся единицы(т.е. выбрана одна из команд:FC00, FD00, FE00 или FF00), управление передается в ячейку с адресом Е0. Здесь должны начинаться микрокоманды дополнительной дешифрации, выделяющие заданную команду путем анализа 9-го и 8-го разрядов РК и передающие управление в свободную область памяти микрокоманд(от Ех до FF), где следует разместить микрокоманды реализации безадресной команды.

4. Все микропрограммы реализуемых команд должны заканчиваться микрокомандой 838F (GOTO ПРЕ(8F)), осуществляющей переход к микрокомандам, завершающим исполнение любой команды базовой микро ЭВМ.

Пример. Для создания команды FF00, которая осуществляет инвертирование содержимого аккумулятора и очистку регистра переноса, можно написать следующую последовательность микрокоманд:

	Адрес

МП
	Микро-

команды
	Комментарии

	E0

E1

E2

E1

E4

E5
	A98F

A88F

1040

4035

4080

838F
	IF BIT(9,PK)=0 THEN ПРЕ(8F): К окончанию цикла

IF BIT(8,PK)=0 THEN ПРУ(8F): исполнения, если

 : дешифрируемая ко-

 : манда не FF00

COM(A)=>БР : Инверсия А

 БР=>А : Пересылка резуль-

 : тата в А и регистр

 : признаков

 0=>C : Очистка С

 GOTO ПРЕ(8F) : Выход

Лабораторная работа № 7

Исследование микропрограммного устройства управления.

Цель работы - исследование микропрограмм выполнения нескольких команд базовой ЭВМ, способов программирования отдельных машинных циклов и дешифрирования команд, а также принципа кодирования отдельных микрокоманд. Работа является завершением первой части домашнего задания №4. В ней производится проверка правильности анализа порядка выполнения микрокоманд заданной программы.

Подготовка к выполнению работы - завершить первую часть домашнего задания №4 и подготовить следующие таблицы:

а)для записи последовательности микрокоманд, которые будут выполняться базовой ЭВМ при реализации фрагмента программы первой части домашнего задания №4 (форма таблицы аналогична таблице этого задания);

б) для записи результатов выполнения шести последних микрокоманд цикла "ИСПОЛНЕНИЕ" команды, которая отмечена символом "+" в заданном фрагменте программы:

	СчМК до

выборки
	Содержимое регистров после выборки и исполнения МК

	МК
	ВМК
	СК
	РА
	РК
	РД
	А
	С
	БР
	N
	Z
	СчМК

	xx
	xxxx
	xxxx
	xxxx
	xxxx
	xxxx
	xxxx
	x
	xxxx
	x
	x
	xxxx

Порядок выполнения работы

Занести в память машины заданный фрагмент программы, ввести ее пусковой адрес, нажать "ПУСК" и после завершения начальной установки устройств ЭВМ перевести ее в режим потактового выполнения программы.

Последовательно выполнить все микрокоманды, записывая в подготовленные таблицы адреса выполняемых микрокоманд и для шести из них - содержимое регистров.

Содержание отчета по работе. В отчет надо поместить домашнее задание №4 (часть 1), указанные выше таблицы экспериментальных данных и схему алгоритма дешифрации команды, отмеченной символом "+".

Лабораторная работа № 8

Синтез команд базовой ЭВМ.

Цель работы - практическое завершение второй части домашнего задания №4. В ней производится загрузка в память микропрограмм микрокоманд новых команд базовой ЭВМ, загрузка в память ЭВМ программы для проверки правильности выполнения синтезированных команд, а также проверка и отладка этих микропрограмм.

Подготовка к выполнению работы. Завершить домашнее задание №4 и подготовить две таблицы по форме, приведенной в лаб. работе №7. Строки первой из этих таблиц (теоретически) должны быть заполнены содержимым регистров базовой ЭВМ при пошаговом выполнении за нее тестовой программы (синтезированные команды должны выполняться по тактам, остальные - по командам). Строку с содержимым регистров ЭВМ после исполнения (или первой микрокоманды новой команды) следует предворять заголовком:

 КОМАНДА хххх, РАСПОЛОЖЕННАЯ ПО АДРЕСУ ххх

Вторая таблица (экспериментальная) заполняется в лаборатории.

Порядок выполнения работы

Занести в память ЭВМ текст тестовой программы.

Занести в память микрокоманд (ПМ) микрокоманды новых команд.

Выполнить в пошаговом режиме тестовую программу, занося в таблицу содержимое регистров процессора после выполнения каждой команды (для синтезированных команд) или каждой команды (для остальных команд).

Содержание отчета по работе. Домашнее задание №4 (часть 2), таблицы с результатами выполнения тестовой программы(теоретическая и экспериментальная). Анализ расхождений между этими таблицами и описание процесса отладки программы и микропрограммы.

Приложение 1

	Для перемещения в клавишном регистре

используются следующие клавиши:

	
	

	RIGHT
	 Перемещение указателя на одну позицию вправо.

	LEFT
	 Перемещение указателя на одну позицию влево.

	UP
	 Инверсия бита (изменение значения на противоположное) по текущему положению указателя

	1
	 Занесение 1 по текущему положению указателя и перемещение его на на следующую позицию

	0
	 Занесение 0 по текущему положению указателя и перемещение его на на следующую позицию

	
	

	В процессе работы также используются клавиши:

	
	

	F4
	Ввод адреса. По этой клавише содержимое клавишного регистра заносится в счетчик команд.

	F5
	Запись. Информация из клавишного регистра заносится в память по текущему содержимому счетчика команд.

	F6
	Чтение. Из ячейки памяти (по адресу расположенному в счетчике команд) информация читается в регистр данных.

	F7
	Пуск. Действие этой клавиши различно в режимах "РАБОТА" и "ОСТАНОВ". В режиме "РАБОТА" по ней происходит обнуление всех регистров, кроме счетчика команд, и происходит запуск программы на выполнение. В режиме "ОСТАНОВ" происходит очистка регистров, кроме счетчика команд, а запуск не производится

	F8
	 Продолжение. В режиме "ОСТАНОВ" происходит исполнение одной инструкции, а в режиме "ОСТАНОВ" продолжение выполнения программы с адреса в регистре команд

	F9
	 Клавиша, управляющая переключением режима работы базовой ЭВМ. Производит переключение режимов "РАБОТА" и "ОСТАНОВ".

	F10
	 Выход из базовой ЭВМ.

	Shift+F4
	 Смена маски.

	
	

	Работа с внешними устройствами обеспечивается клавишами:

	
	

	F1,F2,F3
	 Готовность внешнего устройства 1,2,3 соответственно.

	Tab
	 Переход в режим ввода в регистры данных ВУ2 и ВУ3.

	
	

	Для работы с микрокомандами используйте клавиши:

	
	

	Tab
	 Переключение ввода в обычную память и память микрокоманд. При вводе в память микрокоманд слева от клавишного регистра загорается индикатор МК.

	Shift+F9
	 Включение/Отключение режима ТАКТ. В этом режиме при нажатии клавиши F8 (Продолжение) происходит выполнение одной микрокоманды.

 Содержание

РАЗДЕЛ 1. БАЗОВАЯ ЭВМ

1.1 Назначение базовой ЭВМ

1.2 Структура базовой ЭВМ

1.3. Система команд базовой ЭВМ

1.4 Арифметические операции

1.5 Управление вычислительным процессом, сдвиги и логические операции

1.6 Подпрограммы

1.7 Выполнение машинных команд

Домашнее задание № 1

Домашнее задание № 2

Лабораторная работа № 1

Лабораторная работа № 2

Лабораторная работа № 3

Лабораторная работа № 4

РАЗДЕЛ 2. ОРГАНИЗАЦИЯ ВВОДА-ВЫВОДА В БАЗОВОЙ ЭВМ

2.1 Устройства ввода-вывода базовой ЭВМ

2.2 Программно-управляемая передача данных.

2.3 Асинхронный обмен.

2.4 Обмен по прерыванию программы.

Домашнее задание № 3

Лабораторная работа № 5

Лабораторная работа № 6

РАЗДЕЛ 3. МИКРОПРОГРАММНОЕ УСТРОЙСТВО УПРАВЛЕНИЯ

3.1. Микропрограммное управление вентильными схемами.

3.2 Интерпретатор базовой ЭВМ.

Домашнее задание №4

Лабораторная работа № 7

Лабораторная работа № 8

ПРИЛОЖЕНИЕ 1

3

1

0

2

15

13

12

14

11

9

8

10

7

5

4

6

1

1

1

0

Приказ

на

ввод-вывод

КОП

Адрес устройства

ввода-вывода

в)

КОП

Расширение кода операции

1

0

2

15

13

12

14

11

9

8

10

7

5

4

6

1

1

1

1

3

б)

Код

операции

(КОП)

Адрес

 Бит вида адресации

Адресная часть команды

3

1

0

2

15

13

12

14

11

9

8

10

7

5

4

6

а)

Обращение к

 подпрограмме,

расположенной в

ячейках памяти

с 300 по 326

24

25

26

71

72

73

JSR 300

. . .

JSR 300

ОСНОВНАЯ ПРОГРАММА

Первая команда подпрограммы

Команда выхода из подпрограммы

Ячейка, используемая для размещения

адреса возврата из подпрограммы

300

301

326

. . .

BR (300)

ПОДПРОГРАММА

а

АЛУ

25

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

РА

53

РД

53

СК

25

53

А

С

РК

ADD 20

УУ

Процессор

б

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

РА

25

РД

ADD 21

СК

25

53

А

С

АЛУ

25+1=26

РК

ADD 20

УУ

Процессор

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

в

РА

25

РД

ADD 21

СК

26

53

А

С

АЛУ

26

РК

ADD 20

УУ

Процессор

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

г

РА

25

РД

ADD 21

СК

26

53

А

С

АЛУ

РК

ADD 21

УУ

Процессор

АЛУ

21

д

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

РА

21

РД

ADD 21

СК

26

53

А

С

РК

ADD 21

УУ

Процессор

е

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

РА

21

РД

106

СК

26

53

А

С

АЛУ

РК

ADD 21

УУ

Процессор

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

ж

РА

21

РД

106

СК

26

53

А

С

АЛУ

53+106=159

РК

ADD 21

УУ

Процессор

20

22

21

23

24

25

26

Память

106

0

CLA

ADD 20

ADD 21

MOV22

53

з

РА

21

РД

106

СК

26

159

А

С

АЛУ

РК

ADD 21

УУ

Процессор

Операционная микрокоманда 0 (ОМК0)

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0/1

0/1

0/1

0/1

xxx

xxx

0/1

0/1

0

0

0/1

0/1

0/1

0/1

0/1

0/1

Код

операц.

Левый вход

Правый

вход

Обрат-ный код

Опера-ция

Сдвиги

Память

0-0, 1-А,

2-РС, 3-КР

0-0, 1-РД,

2-РК, 3-СК

0-лев.вх+пр.вх., 1-лев.вх+пр.вх.+1, 2- лев.вх&пр.вх.

0-нет обмена, 1-чтение, 2-запись

0-не сдвигать, 1-сдвиг вправо,2-сдвиг влево

0-не вычислять, 1-левый вход, 2-правый вход

Операционная микрокоманда 1 (ОМК1)

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0/1

0/1

0/1

0/1

0/1

0/1

xxx

xxx

1

0

0/1

0/1

0/1

0/1

0/1

0/1

Код

операц.

Управление

обменом с ВУ

Регистр

С

N

Выход АЛУ

(содерж. БР)

0-не измен., 1-перенос,2-сброс, 3-установ.

0-не изменять, 1-записать результат

0-не изменять состояние, 1-остановить ЭВМ

Z

0-не пересылать, 1-в РА, 2-в РД, 3-в РК, 4-в СК,

5-в АКК, 7-переслать в РА,РД,РК и АКК.

Управляющая микрокоманда (УМК)

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

1

0/1

0/1

0/1

0/1

0/1

0/1

Код

оп.

Поле выбора

проверяемого бита

Адрес перехода

однобитовое поле сравнения

Поле выбора проверяемого регистра: 0-РС, 1-РД, 2-РК, 3-АК

0

Код

операции

31

28

24

20

16

12

8

4

0

Биты управления отдельными вентильными схемами

Операционная микрокоманда (ОМК)

РК

РС

РД

1

А

Код

операции

31

28

24

25

23

16

15

0

Управляющая микрокоманда (УМК)

Поле выбора проверяемого регистра (А,РК,РД,РС)

Однобитное поле сравнения

Адрес перехода

Поле выбора проверяемого бита

Микрокоманда: СК+1=>БР

Горизонтальная: 0000 0408

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

Код операции

Открыть В10 (+1)

Открыть В3 (правый вход АЛУ соединен с СК)

Вертикальная: 0310

00

00

00

11

00

01

00

00

Код операции

На левый вход АЛУ подан 0

Правый вход АЛУ соединен с СК

Обратный код не вычислять

Обмен информацией с памятью не осуществлять

Не сдвигать

Лев.вх.+Пр.вх.+1. те 0+СК+1

PAGE
23

