[bookmark: id.f4f7aaddce86]Лабораторная работа 3. Операции над виртуальной памятью
Порядок выполнения работы:
1. Изучить Функции GlobalMemoryStatus и GetSystemInfo
2. Написать консольное Win32 приложение, в соответствии с полученным вариантом.
Вариант 1. Определить количество страниц физической памяти.
Вариант 2. Определить количество страниц свободной физической памяти
 Вариант 3. Определить количество виртуальных страниц в свободной виртуальной памяти процесса.
Вариант 4. Определить количество виртуальных страниц в файле подкачки.
Вариант 5. Определить количество свободных виртуальных страниц в файле подкачки.
Вариант 6. Определить количество страниц физической памяти, занятых ОС и приложениями.
Вариант 7. Определить количество байтов доступных процессу. Ответ вывести в килобайтах.
Вариант 8. Определить процентное соотношение используемой физической памяти и общего объема физической памяти.
Вариант 9. Определить общее количество доступной физической и дисковой памяти; определить процент полученного объема памяти и максимально возможного объема оперативной памяти.
Вариант 10. Определить процентное соотношение числа виртуальных страниц физической памяти и страниц файла подкачки.

[bookmark: id.a721ac65488b]GetSystemInfo
The GetSystemInfo function returns information about the current system.
VOID GetSystemInfo(
 LPSYSTEM_INFO lpSystemInfo // address of system information
 // structure
);

Parameters
lpSystemInfo
Pointer to a SYSTEM_INFO structure to be filled in by this function.
Return Values
This function does not return a value.
Функция GetSystemInfo возвращает информацию о текущей системе.
VOID GetSystemInfo(LPSYSTEM_INFO lpSystemInfo // адрес структуры для системной информации);
Подробное описанеи см. В тексте задания к лабораторной работе №1.
Функция GlobalMemoryStatus
Функция GlobalMemoryStatus из библиотеки Kernel32.dll предоставляет информацию об использовании физической и виртуальной памяти компьютера. Вот её прототип:
 VOID GlobalMemoryStatus(LPMEMORYSTATUS lpBuffer);
 // Адрес структуры MemoryStatus

Тип данных LPMEMORYSTATUS - это указатель на структуру MemoryStatus:

 typedef struct _MEMORYSTATUS {
	DWORD dwLength; 	// Размер структуры
	DWORD dwMemoryLoad;	// Процент использования памяти
	DWORD dwTotalPhys;	// Физическая память, байт
	DWORD dwAvailPhys;	// Свободная физическая память, байт
	DWORD dwTotalPageFile;	// Размер файла подкачки, байт
	DWORD dwAvailPageFile;	// Свободных байт в файле подкачки
	DWORD dwTotalVirtual;	// Виртуальная память, используемая процессом
	DWORD dwAvailVirtual; // Свободная виртуальная память
	} MEMORYSTATUS, *LPMEMORYSTATUS;

	Поле
	Смысл

	dwLength
	Длина записи. Поле необходимо инициализировать функцией SizeOf до обращения к функции GlobalMemoryStatus

	dwMemoryLoad
	Количество использованной памяти в процентах

	dwTotalPhys
	Число байт установленной на компьютере ОЗУ (физической памяти)

	dwAvailPhys
	Свободная физическая память в байтах

	dwTotalPageFile
	Общий объем в байтах, который могут сохранить файлы/файл подкачки (вообще говоря, не совпадает с размером последних)

	dwAvailPageFile
	Доступный объем из последней величины в байтах

	dwTotalVirtual
	Общее число байтов виртуальной памяти, используемой в вызывающем процессе

	dwAvailVirtual
	Объем виртуальной памяти, доступной для вызывающего процесса

Работа с виртуальной памятью (для самостоятельного изучения)

Для того чтобы зарезервировать или получить в свое распоряжение некоторое количество страниц виртуальной памяти, приложение должно воспользоваться функцией VirtualAlloc, прототип которой представлен ниже:
LPVOID VirtualAlloc(
 LPVOID lpvAddress, // адрес области
 DWORD cbSize, // размер области
 DWORD fdwAllocationType, // способ получения памяти
 DWORD fdwProtect); // тип доступа
Параметры lpvAddress и cbSize задают, соответственно, начальный адрес и размер резервируемой либо получаемой в пользование области памяти. При резервировании адрес округляется до ближайшей границы блока размером 64 Кбайт. В остальных случаях адрес округляется до границы ближайшей страницы памяти.
Заметим, что параметр lpvAddress можно указать как NULL. При этом операционная система выберет начальный адрес самостоятельно.
Что же касается параметра cbSize, то он округляется до целого числа страниц. Поэтому если вы пытаетесь с помощью функции VirtualAlloc получить область памяти размером в один байт, вам будет выделена страница размером 4096 байт. Аналогично, при попытке получить блок памяти размером 4097 байт вы получите две страницы памяти общим размером 8192 байта. Как мы уже говорили, программный интерфейс системы управления виртуальной памятью не предназначен для работы с областями малого размера.
Для параметра fdwAllocationType вы можете использовать одно из следующих значений:

	Значение
	Описание

	MEM_RESERVE
	Функция VirtualAlloc выполняет резервирование диапазона адресов в адресном пространстве приложения

	MEM_COMMIT
	Выполняется выделение страниц памяти для непосредственной работы с ними. Выделенные страницы заполняются нулями

	MEM_TOP_DOWN
	Память выделяется в области верхних адресов адресного пространства приложения

С помощью параметра fdwProtect приложение может установить желаемй тип доступа для заказанных страниц. Можно использвать одно из следующих значений:

	Значение
	Разрешенный доступ

	PAGE_READWRITE
	Чтение и запись

	PAGE_READONLY
	Только чтение

	PAGE_EXECUTE
	Только исполнение программного кода

	PAGE_EXECUTE_READ
	Исполнение и чтение

	PAGE_EXECUTE_READWRITE
	Исполнение, чтение и запись

	PAGE_NOACCESS
	Запрещен любой вид доступа

	PAGE_GUARD
	Сигнализация доступа к старнице. Это значение можно использовать вместе с любыми другими, кроме PAGE_NOACCESS

	PAGE_NOCACHE
	Отмена кэширования для страницы памяти. Используется драйверами устройств. Это значение можно использовать вместе с любыми другими, кроме PAGE_NOACCESS

Если страница отмечена как PAGE_READONLY, при попытке записи в нее возникает аппаратное прерывание защиты доступа (access violation). Эта страница также не может содержать исполнимый код. Попытка выполнения такого кода приведет к возникновению прерывания.
С другой стороны, у вас есть возможность получения страниц, предназначенных только для хранения исполнимого кода. Если такие страницы отмечены как PAGE_EXECUTE, для них не разрешаются операции чтения и записи.
При необходимости зафиксировать обращение к той или иной странице приложение может отметить ее как PAGE_GUARD. Если произойдет попытка обращения к такой странице, возникнет исключение с кодом STATUS_GUARD_PAGE, после чего признак PAGE_GUARD будет автоматически сброшен.
В случае успешного завершения функция VirtualAlloc возвратит адрес зарезервированной или полученной области страниц. При ошибке будет возвращено значение NULL.
Приложение может вначале зарезервировать страницы, вызвав функцию VirtualAlloc с параметром MEM_RESERVE, а затем получить их в пользование, вызвав эту же функцию еще раз для полученной области памяти, но уже с параметром MEM_COMMIT
После использования вы должны освободить полученную ранее виртуальную память, вызвав функцию VirtualFree:
BOOL VirtualFree(
 LPVOID lpvAddress, // адрес области
 DWORD cbSize, // размер области
 DWORD fdwFreeType); // выполняемая операция
Через параметры lpvAddress и cbSize передаются, соответственно, адрес и размер освобождаемой области.
Если вы зарезервировали область виртуальной памяти функцией VirtualAlloc с параметром MEM_RESERVE для последующего получения страниц в пользование и затем вызвали эту функцию еще раз с параметром MEM_COMMIT, вы можете либо совсем освободить область памяти, обозначив соответствующие страницы как свободные, либо оставить их зарезервированными, но не используемыми.
В первом случае вы должны вызвать функцию VirtualFree с параметром fdwFreeType, равным MEM_RELEASE, во втором - с параметром MEM_DECOMMIT.

